
PRINCIPAL COMPONENT 

ANALYSIS

Matrix Algebra Approach 



Nomenclature

In the clustering and dimension reduction 
context:

• Genes are considered to be variables
– Also called dimensions

– Also called components

– Also called axes

• Gene expression levels are the observed 
data 
– Also called data points

– Also called assays

– Also called samples



• Cluster Analysis (represents data points)

– To reduce the number of objects (not dimensions) by 

placing them into groups

– (a cluster is the surrogate for multiple data points)

• Principle Component Analysis (reduces 

dimensions)

– To reduce the number of correlated variables into a 

smaller number of uncorrelated variables (reduced 

dimensionality) by finding a combination of the 

original variables.

(each variable is represented in a new basis, and there 

may be an acceptable lower dimension of the new 

basis, hence fewer variables) 



INTRODUCTION

CONCEPT:  Variance  Information

The analysis we seek must provide the 

greatest information with the least 

cost/complexity

Objectives of PCA 

• To reduce the dimensionality of the data set 

• To identify new meaningful variables



Expression levels from genes A and B 

are plotted against one another. There 

are equal amounts of variance 

accounted for by each gene.  The 

spherical shape of the data swarm 

makes hidden correlations unlikely

Gene A

G
e

n
e

 B

Variance along axis of Gene A

V
a

ri
a

n
c
e
 a

lo
n

g
 a

x
is

 o
f 

G
e

n
e

 B



Elliptical shape of the data swarm 

makes it more likely that there are 

correlated data

covariance
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One unique rotation angle will cause variance to maximize 

on one new axis, while minimizing variance on the 

orthogonal axis

covariance



Dimension Reduction

We could conceivably ignore the projection of minimal 

variance on the new ordinate and consider only the 

variance along the new abscissa, now the new ‘main’ 

axis.

Doing so would result in a single axis, having 

reduced the dimension from 2 to 1, a much less 

complex system



Here are gene expression data for 2 genes. The expression 

levels for the first and 2nd gene are plotted against each other
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Gene 2 expression

Clearly the expression levels are highly correlated;  gene 2 

expression lends little information to what we already knew



Here is a 3-D case. 

There is a great 

deal of covariance  

covariance



In classical statistical regression in a general linear model, 

one regresses a line on the data such that the least squared 

distance, in 3 dimensions, between the data points and the 

line is minimized.  

The regression 

line does not 

necessarily pass 

along the 

maximum 

variance of all 

axes



To understand where the variance lies, an alternative strategy is to 

create a new axis system (basis), where each axis is perpendicular to 

the others, in a manner such that  the least squares error is apportioned 

among the axes in such a way as fewer axes bear the higher burden of 

variance

Of course, the coordinates of the data must 

now be read off in the context of the new 

basis; i.e., the data themselves must be 

transformed.  This re-definition of a basis, 

followed by transformation of coordinates, is 

the central concept of Principal Component 

Analysis

covariance



OBJECTIVE

• Original data (vectors) lie in an N-dimensional vector 
space spanned by an orthonormal basis 
– EACH AXIS REPRESENTS A VARIABLE 

• Find a new orthonormal (orthogonal and normalized) 
basis for the same data (vectors) 
– FIND A NEW SET OF VARIABLES (AXES) 

• Select the new basis s.t. the variance of the 
projection of data on each new axis is maximized 
– THE NEW VARIABLES ‘EXPLAIN’ THE UNDERLYING 

CORRELATIONS BETTER 

– By definition of orthonormal, each of the axes is 
independent of the others 



Finding a New Basis: A Linear Transform

• 1933 Hotelling: Principal Components

• 1946 Karhunen

• 1953 Loeve

• 1967 Lumley: Proper Orthogonal Decomposition

• 1983 Golub and Van Loen:  Singular Value Decomposition
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Old axes {X1, X2, X3,…. Xn}

New axes {y1, y2, y3,…. yn}

Transformation Matrix  V

The Transformation:  Write every axis in the new system as a linear combination of the 
old axes, with every new axis orthogonal, and ||vn|| =1

K-L transformation



The Linear Transformation

• Huge amount of arithmetic to compute the 

transformation head-on

• Even larger amount of arithmetic to compute 

eigenvalues and eigenvectors

• Need computers!!!

– Progress mid-century arrested until computers 

became available

– Using eigenstructure less efficient but more 

elegant…(who cares?)



• Strategy: we need to find a linear transform that will yield 
a new set of axes such that the data across axes are 
uncorrelated (covariance=0) in the new basis. 

• Approach: 

In a covariance matrix, diagonal elements represent variance; off-
diagonal elements represent covariance.

We want the off-diagonal elements to be zero in the covariance matrix 
of the transformed data (thus we will have no correlated data after 
transformation).  

We  will seek that desired structure first by recognizing that the 
structure we seek is a diagonal matrix, that is, a matrix whose values lie 
along the main diagonal and all off-diagonal elements are 0.

Finding the transformation



The Computational Problem

Find a new basis (there are an infinite number) 

which 

• maximizes the variance on each dimension 

•guarantees the orthogonality

There is only one basis satisfying the two conditions.

Plan: Exploit the properties of diagonalization in linear algebra 



Strategy: 

•Diagonalize the correlation matrix of the raw data and define its 
eigenvectors to be the new ‘components’ (basis set)

•Transform the original data with our new linear transformation 
(the matrix of eigenvectors), yielding ‘new’ data points in each 
dimension

•Select from the new components those that account for the 
greatest variance in the problem

•Reduce the number of dimensions by eliminating those with 
least variance

We know: 

•The covariance matrix is square, symmetric with real values*. 

•The eigenvectors of a Hermitian matrix are orthogonal.  As a consequence, the 

eigenvectors do not project upon each other and the eigenvalues are real 

•The eigenvalues tell us the variance associated with each eigenvector

We can:

•Find the eigenstructure of the covariance matrix

•There should be no (or minimal) off-diagonal entries

*This is a special case of a Hermitian matrix (square ,complex,  equal to its conjugate transpose)



JUMPING TO THE ANSWER

The coefficients* to generate the  first new, derived variable 

(principal component) are the elements of the eigenvector*

(associated with the largest eigenvalue ) of the covariance 

matrix . 

Likewise for the second largest eigenvalue and its associated 

eigenvector, etc. 

The original data are multiplied by this eigenvector matrix, 

transforming them in terms of more meaningful variables

The eigenvalues of the covariance matrix of the original data 

tell us the new variance in each new axis (variable or 

principal component) 

*Called ‘factor loading’ in the Psychology literature



Why would all this be?

• The concept underlying this development is to 

look at just one vector in the required transform 

matrix, and just one element in the required new 

data vector, and to maximize the variance of the 

element, while at the same time making the new 

vector normal.

• One this is accomplished, the process can be 

generalized to all vectors in the transformation 

matrix and all elements in the new data vector



The K-L Transform…..

Why would all this be?

Fact: Orthogonality implies that the off-diagonal 

elements of the covariance (correlation) matrix 

must be 0.  If z is the standardized vector 

variable,then the general linear transform is 

Vz =y

where V is the coefficient matrix of the transform.



Walking through the elements of y, 

• y1 is the first element of y

• v
1

is the first column of matrix V

We require  that: 
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v C v C is the covariance matrix

The following is some matrix manipulation:
Maximize this Maximize this

Rewrite the above

Exploit distributive property



So we have an optimization problem.  Frequently, the solution to such problems is to 

find the first derivative of the function (in this case, the transformation matrix)  in 

question, if it is differentiable.

But we have  another problem: v must be normal, each vi must = 1

We need a way to solve a constrained optimization problem.  In this case the 

constraint is a constant.

One technique is to introduce a Lagrange multiplier



Lagrange Multipliers
• Purpose: optimization of a problem with constraints, such as optimizing 

f(x1,x2...) with constraints g1(x1,x2..) that are constant Strategy: Rewrite the 
optimization problem without constraints, using some new parameters

Minimize L(x, ) = f(x) -  g1(x)

where

L(x, ) is the Lagrangian function

 is the Lagrangian Multiplier

To find  ,treat  as a variable, finding the unconstrained minimum of L(x, ) 
while g1(x) = 0 is satisfied



Optimization

1. Take partial derivatives of L(x, ) with respect to  xi and set 

them equal to zero.

2. If there are n variables (i.e., x1, ..., xn) then you will get n + 1 

simultaneous equation to solve (i.e., n variables xi and one 

Lagrangian multiplier )
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1 1 1 1In order tomaximize where 1:v C v v v

Introduce a Lagrangian multiplier for the first v, call 

it  1 (The choice of the symbol l to represent the Lagrangian

multiplier is not entirely coincidental with the same choice to represent 

an eigenvalue).

Then, by adding a 0 term involving the Lagrangian, 

we get a Lagrangian function in : 
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So…………………

This term is 0

constraint



To maximize this function, write the vector of partial 

derivatives and set it to zero: 
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After simplification, we recognize that the 

Lagrangian  represents the eigenvalue in the 

mathematical development of the eigenvalues and 

eigenvectors of a matrix.

 1 1 0 C I v

This only works if  is differentiable



Generalize to all dimensions..

• Likewise for v2, v3 …..etc

• Each eigenvector passes from the origin 

through the maximum variance remaining 

in the data that are uncorrelated with the 

first eigenvector

• Each eigenvalue says what that variance 

is



An astounding result

We can consider the eigenstructure of the 
correlation matrix of our original data as 
the solution

The eigenvectors are our new bases 
vectors.

The eigenvalues tell us about the variance 
on each axis

The signal/noise ratio 
(uncorrelated/correlated) is maximized



RECIPE
1. Remove the mean from the data. Even better, normalize it if 

there are large fold differences among the data

2. Find the covariance matrix of the resulting adjusted data 

3. Find the eigenvectors and eigenvalues of the covariance 
matrix 

4. Sort the eigenvalue-eigenvector pairs by descending order of 
the eigenvalues 

5. The principal components are the eigenvectors (in order of the 
eigenvalues) and the variance explained by each component 
is the eigenvalue

6. Transformed the data by the principal components





Where’s the dimension 

reduction?

We have successfully transformed our vector 

space from one to another.

What’s the point of that, since we were 

looking for dimension reduction?



If most (for instance, 80% to 90%) of the total 

population variance, for large number of 

dimensions, can be attributed to the first 

one, two, or three components, then these 

components can “replace” the original 

variables without much loss of 

information.

Scree Plots show the falloff of variance in the 

ordered eigenvalues

Data Reduction



PCA
So there are successive drops in variance with 

each factor.  



What do we have?

Usually we wish to transform our problem to 

a new representation

We have new axes and new data 

transformed in the context of the new 

axes



Example

The Brain Tumor Gene Chip

BrainTumorChip is a matrix of artificial data from an 
hypothetical experiment.

There are 90 expression levels read for each of 20 genes

– The expression levels are from 18 persons

– There are 5 tissues sampled for each person
• Cerebrum

• Cerebellum

• Spinal Fluid

• Meninges

• Spinal Cord

– There is a reasonable anticipation that here would be 
some disease specific differences among the 18 
people

• 6 are normal

• 6 have meningiomas

• 6 have gliomas



Among the 20 genes, there are 5 generic 
types of gene action

– The genes are broadly classified as 
• Xf:  Involved in transport 

• Ra:  reabsorbtion

• QW: free radical quenching 

• Ta: transcriptase accelerators 

• Nk:  no known function

– There are 3-5 specific genes within each 
category

Example

The Brain Tumor Gene Chip



This is a plot of the two most highly correlated gene expression vectors in the 

experiment.  So nearly perfect is the correlation that the data lie along the 45 line.  

The 45 line is likely the first eigenvector.  The arrows show the likely direction of 

the second eigenvector, orthogonal to the first eigenvector.
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This is a plot of the two least correlated gene expression vectors in the 

experiment. The data do not lie along the diagonal and are not likely correlated.  

The arrows suggest what will likely be the direction of the first eigenvector
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First two principal components of un-normalized data with significant fold differences



1st and 3rd principal components of un-normalized data with significant fold differences



2nd and 3rd principal components of un-normalized data with significant fold 

differences



Other things we may want….

• Sometimes we want to get our original data O 

back, without, or, more often, with dimension 

reduction

O=E-1N   

Don’t forget that the mean was subtracted off the original data set, 

so it must be added back
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Data before PCA dimension 

removal



Influence of Scale
• Even though we have subtracted the mean, there can be 

a significant influence of the data scale on the results

• In our test data, we have shown some gene expression 

data 3 orders f magnitude above other genes

• In a real experiment this would not likely happen, but 

still, there is a real fold effect

• The following graphs show the dramatic change in effect 

when all data are represented in a normalized (z-score) 

form
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Data are represented by their z-scores- A different set of eigenvalues



Data are represented by their z-scores

In the world of principal components, clustering seems more natural and intuitive.   

In our 20 gene experiment, we can account for  ~91% of the variance in this 3-

dimensional representation, which lends itself readily to clustering.  The thing to 

remember, however, is that the axes are NOT genes; they are components, which 

are linear combinations of genes

Same data, 2 views (rotated and inverted)



Despite the fact that our goal is data reduction, not clustering, there are still natural clusters that 

emerge in the lower dimensional model.  It is very important to remember, however, that we are 

not clustering based on gene expression levels, but rather on coordinates on the components.

meninges

Spinal fluid

Cerebellum:  

normal and 

meningioma

Cerebellum : glioma

1st and 2nd principal components – normalized data



Cerebellum: normal, meningioma Cerebellum: glioma

Spinal fluid

Meninges: glioma 

and normal

Meninges: 

meningioma

1st and 3rd principal components - normalized data

Very dense clusters 

containing most of the 

remaining data



2nd and 3rd principal components - normalized data

Very dense clusters 

containing most of the 

remaining data


