Molecular Evolution Answering question 2

The degree of divergence between 2 sequences is the Hamming distance (the edit distance /length of the sequence)

Variables

- Number of mutations (K)
- Rate of mutation (α)
- Time elapsed since divergence (T)

Remember from Junior High Algebra: time x rate $=$ distance

When divergence is neither too recent nor too remote in time*:

*Polymorphism prior to divergence in very close species
Increased probability of same site multiple substitutions in remote species

Divergent Sequences
 Number of Mutations (Evolutionary Distance)

- We really don't know how many mutations have occurred in divergent sequences
- There can be additional mutations of the same site in one sequence
- The same site can mutate in both sequences
- The same site in both sequences can mutate to the same base and appear never to have diverged

	Divergent sequence 1	original	Divergent sequence 2
		A	
		C	
	T	T	
	$T \leftarrow$	$\leftarrow A$	A
	C	C	C
Divergent sequences-		-	
Some possible mutation		- A	
schemes*	T	T	T
	$G \leftarrow$	$\leftarrow T$	G
	G	G	G
	A	A	$\rightarrow A$
		A	
		C	
		T	
		G	

*from Grauer and Li

Jukes and Cantor Mutation Model

- If a sequence exists over t, the probability of the base, say, A, at any given site being the same is $p A A_{t}$
- The joint probability that two (divergent) sequences having the same base at the same site is $p\left(A_{0} A_{t}\right)$ for seq $1 \times p\left(A_{0} A_{t}\right)$ for seq 1 , or $p^{2} A_{0} A_{t}$
- Likewise, the probability that two (divergent) sequences having a different base at the same site is $p^{2} A C_{t}$ or $p^{2} A G_{t}$ or $p^{2} A T_{t}$
- The total probability is

$$
p_{\text {total }}=p^{2} A_{0} A_{t}+p^{2} A_{0} C_{t}+p^{2} A_{0} G_{t}+p^{2} A_{0} T_{t}
$$

Recalling that, for the Jukes and Cantor model,

$$
p A_{0} A_{t}=\frac{1}{4}+\left(\frac{3}{4}\right) e^{-4 \alpha t}
$$

And, having just established that
$p_{\text {total }}=p^{2} A_{0} A_{t}+p^{2} A_{0} C_{t}+p^{2} A_{0} G_{t}+p^{2} A_{0} T_{t}$
we determine that

$$
p_{\text {total }}=\frac{1}{4}+\left(\frac{3}{4}\right)\left(e^{-4 \alpha t}\right)^{2}=\frac{1}{4}+\frac{3}{4} e^{-8 \alpha t}
$$

Now, $\mathrm{p}_{\text {total }}$ is the probability that we end up with the same nucleotide as we started with, after t. For our investigation of divergent sequences, we are really looking for the probability that the nucleotide in a given site would be different after t.

That probability is, of course $p_{\text {different }}=1-p_{\text {total, }}$ or

$$
p_{\text {different }}=\frac{3}{4}\left(1-e^{-8 \alpha t}\right)
$$

By rewriting

$$
p_{\text {different }}=\frac{3}{4}\left(1-e^{-8 \alpha t}\right)
$$

we get

$$
-8 \alpha t=-\ln \left(1-\frac{4}{3} p_{\text {different }}\right)
$$

But we cannot estimate α. We do know, however, that 3α t is the rate of substitutions per site .

Let K represent the number of substitutions per site since the sequences diverged. For the Jukes-Cantor model,

Arbitrarily, set $K=2(3 \alpha t)=6 \alpha t$ or $K=-\frac{4}{3} 6 \alpha t$
Substituting Kinto the expression $-8 \alpha t=-\ln \left(1-\frac{4}{3} p\right)$ we get

$$
\begin{aligned}
& -\frac{4}{3} K=-\ln \left(1-\frac{4}{3} p\right) \\
& K=-\frac{3}{4} \ln \left(1-\frac{4}{3} p\right)
\end{aligned}
$$

Estimating Evolutionary Distance

K is a proxy evolutionary distance. In the final analysis, α will need to be calibrated, most likely by biological observation

$$
\begin{aligned}
& \text { dist } \approx-\frac{3}{4} \ln \left(1-\frac{4}{3} p\right) \\
& \text { where } p=\text { fraction of changed nucleotides } \\
& \text { or } p=\left(\frac{\# \text { of changes }}{\text { length of sequence }}\right)
\end{aligned}
$$

Hamming distance is sometimes defined as the number of changes (same as edit distance) and sometimes as the number of changes/sequence length. Here p is the Hamming distance

EXAMPLE: Consider these two sequences

A	T	C	G	A	G	C	A
A	A	C	G	A	C	C	A

The edit distance is 2 .
p is $2 / 8=.25$
Dist $=-0.75 \ln [1-4 / 3(0.25)]$
$=0.30035$

When diverging sequences are far apart, distance K becomes unreliable because of sites involved more than once

Substitution rates

- Coding DNA
- Synonymous substitutions: same AA
- Nonsynonymous substitutions: different AA
- Non coding DNA
- Data from UTRs, else scant data

Protein Coding

Synonymous and Nonsynonymous substitutions

- A \#1 or \#2 position can influence whether \#3 will make a synonymous substitution
- Transitions are more frequently synonymous than transversions

All of which make the models significantly more complicated

Codons

- 4-fold degeneracy: any nucleotide in the 3 rd position specifies the same AA
- gly: GGA,GGC,GGG,GGU
- 2-fold degeneracy: two nucleotides in the $3^{\text {rd }}$ position specifiy the same AA
- glutamic acid: GAA,GAG
- Only transversions are nonsynonymous
- Special case: 3 nucleotides code for the same AA
- ileu: AUA,AUC,AUU
- 3 AAs (ser,leu,arg) have 6 codons
- 2AAs (met (AUG) and try (UGG) have only 1 codon

Type of substitution vis à vis rate of substitution* (in substitutions/billion yrs)

	Non degenerate	Twofold degenerate	Fourfold degenerate
Transition	0.40	1.86	2.24
Transversion	0.38	0.38	1.47

[^0]
Rates

Coding DNA

Non-synonymous $\begin{array}{lll}\text { actin } \alpha & 0 & \text { substitutions /site /year }\end{array}$
γ interferon 3.1×10^{-9} substitutions /site /year
Synonymous up to $25 x$ higher rate

Substitution rates within genes

Figure 4.3 Average rates of substitution in different parts of genes (white) and i pseudogenes (gray). From Li (1997).

Mutation Rates

Possibly explained by

- Mutational input
- Genetic drift of neutral alleles
- Purifying selection against deleterious alleles (selectional constraint)

But what about positive selection?

If Darwinian positive selection, then
$K_{\text {nonsynonymous }}>\mathrm{K}_{\text {synonymous }}$

BUT

Statistical analysis does not lead to that conclusion

MOLECULAR CLOCK CONCEPT*

The assumption: Mutations occur at a fixed rate (α) across time

A theory, unproven. But, if indeed there is a molecular clock, then our formula

$$
\alpha=\frac{K}{2 T}
$$

can be used when K is known but there are no paleontological data for T
*Important in phylogeny determinations

Molecular Clock in Action

Taken from Grauer and Li, modified from Langley and Fitch, 1974 Mol Evol 3 161-177 [4]

[^0]: *Table from Grauer and Li

