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Questions for Today

• What is the probability of finding any 

specific nucleotide at any given site?

• How many mutations have occurred 

since sequences diverged

• What is the rate of mutation



Bioinformatics vis à vis Biology

– We can use theory to estimate the number of mutations

– We need paleontological evidence to determine the 

passage of time



Question 1 

• Examine some models of mutation

• Show how to determine ultimate probabilities 

of specific nucleotides appearing, given 

mutation rate(s)

– Show that specific nucleotide probabilities are 

stationary in the limit
• Analytic approach: By calculus to understand the underlying theory

• Numeric Approach: By Markov Chains to process simple numerical 

examples

• Linear Algebraic approach: By transition matrix eigenstruture to handle 

complex models and complicated matrices



RECALL

•A (purine) binds (2 H bonds)  to T (pyrimidine)

•C (pyrimidine) binds (3 H bonds)  to G (purine)

Possible mutations:

purine purine   AG, GA (transition)

pyrimidine pyrimidine CT , TC (transition)

purine  pyrimidine   AT, AC, GT, GC (transversion)

pyrimidine purine TA, CA, TG, CG (transversion)

Note that there are twice as many transversions as transitions possible 



A Calculus Solution

The First Question, again:

What is the probability of a specific 

nucleotide in a specific position? 



Nucleotide Substitution 
A Simple Model: Jukes and Cantor

Let  = the probability of substitution from one nucleotide to 

another in one time click.  By hypothesis, whether it is a purine-

purine, purine -pyrimidine, or pyrimidine-pyrimidine substitution, 

is not considered in this model;  is the same for all mutations in 

the Jukes and Cantor model.

If we choose some fixed  nucleotide position in the DNA, and 

begin with a given nucleotide, WLOG, Adenine (A), then 

•at the next time click, the probability of substituting to 

C,G,or T is  each, or 3  total.

•The probability of remaining in A is 1-3.



In the time click that follows  (click 2),  there 

are 2 ways to produce A: 

• A Remains as A, where it had been in click 1 

OR

• C,T,G (extant in time click 1) mutates to A



pA0=1

pA1=1-3

pA2 = (1-3 )pA1+ (1-pA1)

pC1= 

pG1= 

pT1= 

pĀ1=1-pA1=3

3



1-3

(1-3 )pA1= (1-3 )2 but we leave it in

the expanded form so that we can 

write a recursion

t0 t1 t2

1-3



pAt+1 = (1-3 )pAt+ (1-pAt)

THE  ITERATION



pAt+1 = (1-3 )pAt+ (1-pAt)

pAt+1- pAt = -3  pAt + (1-pAt)

pAt = -3  pAt + (1-pAt)

Moving and re-arranging terms, we 

derive a difference equation

pAt = -4  pAt + 



Making a difference 

equation into a 

differential equation

pAt = -4  pAt + 
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Solving the 1st order 

linear differential 

equation
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If we start in A  (i.e. pA0=1):

If we start in C,G,T (i.e. pA0=0)
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We now have an expression for the probability of being in state A 

at time  t



Equilibrium

It is easy to see that the probability of ending up 

in state A asymptotically approaches an 

equilibrium probability (1/4)  after a very large 

number of clicks.  Likewise, the equilibrium 

probability is approached from a not-A initial 

condition.
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Stationarity Property

• In the language of stochastic processes, 

this asymptotically derived probability, 

p=0.25, is called the stationary probability.

2 key stochastic properties to be aware of are stationarity and 

ergodicity.

• A stationary process has the same moments regardless of which 

realization is sampled.

• An ergodic process has the same moments regardless of when a 

single realization is sampled.



A more sophisticated 

model

(Kimura)

We know that transitions
purine purine   AG, GA

or pyrimidine pyrimidine CT , TC 

are more thermodynamically favorable 
(hence more probable)  than 
transversions
purine  pyrimidine   AT, AC, GT, GC, 

or pyrimidine purine TA, CA, TG, CG

The Kimura model captures that  notion by 
assigning separate probabilities to each



Kimura

• In the Kimura model, we will have a 

mutational rate   for a transition

• There will be a separate transversion rate 



where presumably > 

and where +2 must be < 1 (mathematical 

requirement)

and where +2 should be <<< 1 (evolutionary fact)



1 1 2pAA    

The probability of remaining in state A at click 2 is the sum of all 

the possible journeys
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Again, generalizing 
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Equilibrium

Just as in the Jukes-Cantor model, in 

the limit, this much more  complicated 

Kimura model is also stationary with 

asymptotic probability of 0.25



Another Viewpoint: A 

Numeric Solution

We can show this same convergence to 
stationary probabilities by:

• Creating a Transition Matrix (a Markov 
Matrix)

• Evolve the Transition Matrix to a vector 
of stationary probabilities using matrix 
arithmetic



DEFINITIONS
Markov property

A next-state stochastic process variable, dependent only on 
the current state, with the property of "forgetting" all states 
before, has the Markov property.

Markov process
A continuous stochastic process with the Markov property is 

called a Markov process.  The probability of change from 
one state to the subsequent state is governed by a 
Markov propagator.

Markov chain
A discrete process with the Markov property is called a 

Markov chain.  The probability of change from one state to 
the subsequent state is called the transition probability.

Andrei Markov

1856-1922



Equilibrium

• We can represent nucleotide change 
probabilities as transition probabilities in 
a Markov chain

• Specifically, we write a transition matrix 
for the Jukes and Cantor model, with 
each element representing a transition 
probability from one nucleotide to the 
next



Properties of Markov 

Chains

• Absorbing: Possible to get trapped

• Non-absorbing

– Ergodic (irreducible) Visits everywhere at least 

once  (ergon ‘odos)

– Regular: There is some power at which all 

transitions are (positive) nonzero

Every regular chain is ergodic, but not vice versa



Note that all transition probabilities out of state F are nil.

This is an absorbing Markov chain; transition out of any state will 

ultimately reach F and become absorbed

Markov chain in state A with transition probabilities
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Here is the transition matrix for the Markov Chain illustrated in 

the previous slide

Note the 

absorbing state



Imagine one click of arbitrary time. We note the 

transition probabilities.  In the next click, we 

operate on the state that is current, oblivious to 

any previous states (Markov property), applying 

the transition probabilities that exist in this 

moment. 

In other words, we multiply the current transition 

matrix by itself to get the ‘new’ transition 

probabilities. (Keep in mind that this multiplication 

is matrix, multiplication, not element-by-element 

ordinary multiplication.)



0.1448    0.0528    0.0031    0.1190    0.0556    0.5207    0.0478    0.0383    0.0180

0.1513    0.0552    0.0032    0.1245    0.0580    0.4989    0.0500    0.0399    0.0188

0.1412    0.0516    0.0030    0.1160    0.0542    0.5325    0.0467    0.0373    0.0175

0.1190    0.0434    0.0025    0.0981    0.0456    0.6057    0.0394    0.0314    0.0149

0.0972    0.0355    0.0021    0.0798    0.0374    0.6781    0.0321    0.0258    0.0120

0            0             0             0             0          1.0000        0            0            0

0.1585    0.0579    0.0034    0.1302    0.0608    0.4754    0.0524    0.0419    0.0196

0.0861    0.0314    0.0018    0.0707    0.0332    0.7149    0.0284    0.0229    0.0107

0.0449    0.0164    0.0010    0.0371    0.0172    0.8511    0.0149    0.0119    0.0056
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After only 20 time clicks, one can begin to observe the probability of staying 

in state F (transition F F ) approaching  1.0

After 100 time clicks, a steady state is reached, and the process is nearly all absorbed into 

state F

0.0045    0.0016    0.0001    0.0037    0.0017    0.9852    0.0015    0.0012    0.0006

0.0047    0.0017    0.0001    0.0038    0.0018    0.9846    0.0015    0.0012    0.0006

0.0043    0.0016    0.0001    0.0036    0.0017    0.9856    0.0014    0.0011    0.0005

0.0037    0.0013    0.0001    0.0030    0.0014    0.9879    0.0012    0.0010    0.0005

0.0030    0.0011    0.0001    0.0025    0.0011    0.9901    0.0010    0.0008    0.0004

0             0            0             0             0          1.0000       0            0            0

0.0049    0.0018    0.0001    0.0040    0.0019    0.9838    0.0016    0.0013    0.0006

0.0026    0.0010    0.0001    0.0022    0.0010    0.9912    0.0009    0.0007    0.0003

0.0014    0.0005    0.0000    0.0011    0.0005    0.9954    0.0005    0.0004    0.0002
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The Probability Matrix

• We have given an example, and if you look 

closely, note that the row values add up to 1.0,  

as would be the case for a Markov Transition 

Matrix:

– Row entries sum to 1.0

• Additionally, for our evolutionary task, we 

require
– Non-absorbing

– Ergodic

– Regular

Frequently called a ‘Stochastic Matrix’



Suppose we allowed transition out of F to C, E, or I, each with probability 0.01. 

Then the chain {A, B, C, D, E, F, G, H, I} is no longer absorbing. Further, it is ergodic

(irreducible) because every element is eventually reachable.   Yet further, the underlying 

Markov Chain is regular, since there is a power where all elements are positive (non-negative 

and non-zero) , although this is not obvious at this power of 1). 

Here is the transition matrix:
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Markov Transition Matrix

Note that this matrix mimics the transition 

rules of a Non-Deterministic Finite 

Automaton

• The Markov property is key

• The requirement for regularity is removed from 

the NDFA (although it would be bizarre 

machine design to have non-positive transition 

probabilities in an NDFA)

• The requirement for ergodicity is also removed 

in a NDFA but required for the Markov 

Transition Matrix 



Fundamental Limit 

Theorem for Regular 

Markov Chains

If P is a regular transition matrix then

where U is a probability matrix with each 

row a fixed probability vector and all rows 

equal 

n

n
lim P U






Fundamental Limit Theorem 

for Markov Chains at Work

Let’s put the theorem to work!

matrix. Since it is already 

– Ergodic

– Regular

– non absorbing

just exponentiate it (with matrix multiplication, of course)



The corresponding  transition matrix is converging to the stationary row vector. 

After 157 powers it is stationary up to >4 decimal places.

157
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NOTICE THAT THE STEADY STATE ROWS ARE  IDENTICAL AND THE COLUMNS ARE 

PROBABILITIES.  In looking back at the graph, it is not surprising that, in the limit,  A is more likely 

to reach F than any other state, as is borne out by the steady state probability of AF.



The Perron-Frobenius Theorem motivates  the 

following development: 

The stationary transition probabilities are given 

by the probability eigenvector corresponding to 

the eigenvalue of 1

Stationary Probability:  An Algebraic Approach

to the Eigenstructure of the Transition Matrix



Linear Algebra  

Mini Review

.

n

Let Abean n n matrix

is an eigenvalue of Aif non zero vector X in such that

AX X







  



If X is a non-zero vector satisfying the above, X is an 

eigenvector. There can be more than one solution; 

there are as many solutions (eigenvectors)  as the 

order (n) of the matrix, although the solutions may 

not be distinct.



X1

X2

AX1

BX2=X2

A and B are linear transformation matrices

A rotates X1 to 

a new vector

AX1

B rotates X2 to a new vector BX2

that is co-linear with X2; it is a scalar 

multiple of X2. BX2 is the one of the 

eigenvectors and the scalar multiple 

 is its eigenvalue



When you do this rotation, you need to know two things 

about where you end up:

1. What vectors emerge from the rotation (the eigenvectors)

2. What scale factors emerge from the rotation (the 

eigenvalues) 



Given AX=X, which represents a linear system of equations.

Then, re-writing this:

AX-IX=0  where I is the identity matrix

For this linear system to have a non-trivial solution, its determinant must be zero.

So,                                               for a system of rank 2

Solving, we get 

resulting in a quadratic (in a matrix of rank 2)  equation in . This produces two 

values for  in a system of rank 2,  1 and 2.

These  are the characteristic roots, or eigenvalues, of the system.  There will be an 

eigenvector corresponding to each eigenvalue

11 12

21 22
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a a

a a
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
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11 22 12 21( )( ) ( )( ) 0a a a a    



Linear Algebra and Markov 

Transition Matrices

Review: There are  three prerequisites in order 
to make  classify a transition matrix  as a  
probability matrix and to make it consistent with 
our biology

– The rows of the transition matrix are 
probability vectors (column entries in each 
row sum to 1.0)

– The Matrix is regular (there is at least one 
power of the matrix  which has only 
positive entries

– The chain is ergodic (irreducible) and 
aperiodic



Back to the Question:

What is the probability of a specific 

nucleotide at any given site?



Stationary Probability

If V is the steady state vector, then it stands to 
reason that MV=V where M is the transition 
matrix

This is the same thing as MV=V where =1

Then it further stands to reason that the steady 
state vector of M is that specific eigenvector V
corresponding to the eigenvalue =1 that is a 
probability vector (remember that, while there 
is an infinitude of parallel eigenvectors 
corresponding to =1, only one of them is a 
probability vector)



The Jukes-Cantor Model of Nucleotide 

Substitution Probabiities

•Assumes that all nucleotides are equally likely to substitute for each other

• is a probability  reflecting how often a  nucleotide substitutes in 1 generation
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Jukes-Cantor Model

1,(1 4 ), (1 4 ), (1 4 )

0 0
, , ,

0 0

0 0

The eigenvalues are

Thecorresponding eigenvectors are
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Choose the eigenvector 

corresponding to the 

eigenvalue 1
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Jukes-Cantor Model

There are an infinitude of these vectors. But 

because this is a probability vector, the coefficients 

must sum to 1.  Because the elements are equal, the 

coefficients must be .25 each.

Thus, the specific eigenvector we require must be:

.25

.25

.25

.25

 
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 
 
  
 IMPLICATION: 

When our Jukes_Cantor model reaches equilibrium, the probabilities of 

transitions from each of the nucleotides are equal.



More Complicated 

Models

Kimura

transitions (purinepurine,  pyrimidine pyrimidine) 

[AG , CT   with frequency ]

more likely than

transversions (purine pyrimidine,  pyrimidine  purine)

[AC , GT  with frequency ]

NOTE simpler versions assume 
freq A G =  freq G A etc



Kimura Transition 

Matrix

1 2

1 2

1 2

1 2

A C G T

A

C

G

T

    

    

    

    

  
 

  
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Here, again, the eigenvector corresponding to the eigenvalue of 1 would 

represent the stationary transition probabilities.  It is left as an exercise to 

evaluate the stationary transition probabilities in this model.


