
Joint Probability and the 
Markov Assumption



Conditional Probability Calculation
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Joint Probability calculation when A and B are independent 
events
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Joint Conditional Probability Calculation
(Chain Rule)
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While the chain rule can be represented  succinctly by the expression

where represents the intersection of probabilities (joint probability),

the  expansion of the expression needed for calculation can get very messy. Here 

is the expansion for 6 variables. Imagine how messy  it would get with more.



The Markov Assumption cleans up the mess
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There is no memory of previous events.  X1 is the future, x2 is the now. 
The x3,x4 …are the past; they are irrelevant



ENTROPY



"Pluralitas non est ponenda sine 
neccesitate"

also

Frusta fit per plura quod potest
fieri per pauciora. 

Writings of Friar William of Occam….



OCCAM’S RAZOR

When there are 2 or more possible explanations for an 
observed event, we want to choose the explanation 
with the fewest and simplest assumptions

This is OCCAM’S razor: it ‘cuts’ away the excess verbiage, 
conditions, complications, and unnecessary logic



So, what is ‘simple’?

• We will always assume that a system will seek its 
lowest energy state

Equivalently

• We will always assume that a system will always 
seek its highest entropy state

Equivalently

• The least (Kolmogorov) complexity is the best



Entropy
Entropy (real number 0) is a measure of disorder

• High entropy
• High disorder

• Much information needed to specify all the states

• Low entropy
• Well organized

• Little or no information needed to specify all the states



MAXWELL’S DEMON

A Demon operates a frictionless, weightless gate, and whenever a hot 

particle comes to the gate, he opens the gate, letting the hot particle 

through, then closes the gate.

In this fashion, he expends no Energy but drives Entropy down, in 

violation of the Second Law, and divorced from Energy and 

Enthalpy, in violation of the First Law



Shannon Entropy

• A bridge between statistical thermodynamics and information

• If you can know (or guess) about each particle in the system (say, a 
gas), you can determine the entropy of the system



Shannon Entropy

• Likewise, you can measure the information in a 
message by knowing (or guessing) the probability of 
each element of the message.

• Information relates to entropy through probability as:

S= -p(x)log2p(x) 

where S is entropy, p(x) is the probability of event x



Shannon Entropy

Shannon generalized this for a set of events in a 
system and for letters in an alphabet.
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Shannon Entropy

Example:

Given AATGATGCTGCAAATAAGTA

The frequencies (probabilities) of the bases are

A 9/20

C 2/20

G 4/20

T 5/20



Shannon Entropy

 2 2 2 2.45log .45 .1log .1 .2log .2 .25log .25

S 

   

.45(-1.152)+.1(-3.32)+.2(-2.32)+.25(-2)

=1.815

-1.81498



Information

A measure of entropy reduction by sending a signal

Difference of entropy before and after



Relative Information
We can compare sequence data with background data, if we know the probability densities for both, using 

this notion of information, expressed as a ‘distance’.

For example, if we look at a character at position  in a sequence, its distance to the background characters, 
say, for DNA, would be the Kullback-Liebler distance*

where q is the probability of the character in the sequence density and p is the probability in the background

*Not a real distance. Better called the K-L divergence. Distance is a metric; K-L is not;

KLp||q  KLq||p
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