
GENE FINDING



The Computational Problem

We are given a sequence of DNA and we 

wish to know which subsequence or 

concatenation of subsequences constitutes a 

gene.



The Computational Problem

Confounding Realities:

There is a key difference between prokaryotes and 
eukaryotes in the context of recognizing genes in 
sequences:

• Over 85% of the prokaryotic genome is coding

• Only 3% of the eukaryotic genome is coding



The Computational Problem 

Restated

Parse genomic DNA to identify a complete gene



Eurkaryotic Genes

In order to find a eukaryotic gene, at the very least 
we must identify 4 signals:

1. Start codon

2. Stop codon

3. Beginning of intron (donor site)

4. End of intron (acceptor site)

It helps to find other signals outside the gene such as 
promotors and  ribosomal binding sites



Start Codon

– Eukaryote ATG

– Prokaryote ATG,GTG,TTG

– Can occur by chance 1/43 each

– There is usually something characteristic 

upstream (a promotor),  but its location and 

sequence are not always consistent among 

genes or species



Stop Codon

• TAA. TAG. TGA

• Nothing characteristic upstream

• Also a 1/43 chance of random occurrence 

for each



Exons in Eukaryotes

• Initial Exon

– Begins with START codon

• Terminal Exon

– Ends with STOP codon

INTRONINITIAL TERMINALEXON EXON



Splice Sites

• Donor almost always GT

• Acceptor almost always AG

• Certain consistencies around the splice 

sites.

ATG ATT

Exon base count is not always 0mod3:  Introns can split codons!

The split is not necessarily in-frame

INTRONGT AG



Open Reading Frames (ORFs)

Begins with START codon, ends with STOP codon. 

Usually it is the longest sequence without a stop codon. 

Should be a piece of cake: Theoretically, an ORF is a 
Gene.  Indeed, in  a prokaryote, it probably is a gene

The problem:

An ORF is ended by a stop codon. How do you know 
that the STOP codon is the ‘real’ stop, or instead is a 
stop codon sequence embedded randomly in a non-
coding area (1/64 chance)? 

Further, this STOP codon could come from any of 6 
reading frames.

(Sense and anti-sense, 3 frames each)



ATG ATTACG CCG ATA CTG……TAA CCG ………ATG……… TTA GGC 

Primordial Gene

ATG ATTACG CCG ATACTG   TAA CCG ………ATG………… TTA GGC 

GTC  GA TTA G

Intron

ATG ATTACG CCG AT                                        ACTG…TAA CCG ………ATG………… TTA GGC G T CG ATT AG

Intron

Evolved DNA

ORF

Note additional start code does not vitiate ORF

ORF ORF

The STOP codon is now in-frame.  Note that the  additional 

start code does not vitiate ORF

Note Stop Codon arising by chance



Origin of the Split Structure of Spliceosomal Genes from Open Reading-Frame Length Constraints in Primordial Random DNA Sequences

Rahul Regulapati, Chandan Kumar Singh, Ashwini Bhasi, Periannan Senapathy     manuscript in preparation 2006- personal communication

ORFs  have lengths upwardly bounded at 600, with 99% of 

length <200, exponentially distributed.  One theory is that 

they originated from random DNA as evidenced by this 

random generation model

Length of ORFs (bases)



So, in summary, and as perhaps an oversimplification:

•Prokaryotes

Find the ORF

•Eukaryotes

Need to identify more, including, at the very least, splice sites



Gene Finding Strategies

• Brute-force Signal ID (match, consensus, motif)

• Content scoring methods-analyze large segments for 
statistical patterns
– Codon frequency.  Differs in

• Coding part of exons

• Noncoding part of exons

• Introns

• Intergenic regions

– Di Codon frequency 

– N-mer freqencies

• Entropy (varies among the 4 regions)

• Periodic frequencies



Gene Finding  

Models

• Weight Matrix Models 

• Probabilistic

– Hidden Markov Models

– Bayesian

• Decision Trees

• Neural Nets

• Combinations

Machine Learning Issue:

Supervised vs Unsupervised



Gene Finding Targets
• Gene content

• Intragenic content

• Splice Sites

• Promotor region signals

– CpG Islands in vertebrates 

• Promotor binding sites

• Ribosome binding site

– Prokaryotes: 

• Shine-Delgarno sequences AGGAGG at -35, -8

• Pribnow-Schaller Box  TATAAT at -10

– Eukaryotes: 

• Kozack consensus A/GAACCCATGG at -8

• TATA Box TATAAA at -25 

• CAAT Box GGCCAATCT 75-80 upstream from other promoters

• Transcription Start site

• Gene start and stop signals



A Weight-Matrix Example

Signals: CpG Islands



CpG Islands
Cytosine before Guanine becomes methylated on its 1-

position, frequently then mutating to Thymine with a 
consequent TpG sequence.

5’

3’



CpG Islands

As a consequence, the frequencies of C followed 

by G occur much more seldom than would be 

random.

Given this predilection for eliminating CpG, the 

event of an actual occurrence of CpG, then, 

might be a SIGNAL because it has now become 

‘unexpected’ in this new context



CpG Islands-Signals

Indeed, it is a signal:

• In vertebrates, near start codons or near promoters, 

the methylation/substitution does not occur for 

some reason

• As a consequence, there are extended lengths of 

DNA in which CpG dinucleotide sequences exist 

at a much higher frequency than elsewhere. These 

are called CpG Islands. These islands are located 

in sections from 200-500 bp long, near promotors. 

~40% of mammals have them, and nearly twice 

that in humans



Brute Force: A Classical  Approach

Employ a variant of codon frequency, using 

dinucleotide (or transition) frequency and 

run a window along the string of DNA



Does a short stretch of DNA come 

from a CpG island?

• Train on CpG islands
– Compute the probability of each possible transition

• Train on CpG oceans
– Compute the probability of each possible transition

From Durbin,Eddy et al 1998
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From Durbin,Eddy et al 1998
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Gives an overview of the window contents 

rather than one specific transition
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Log2 likelihood length-normalized scores for many sequences

There are 48 islands and 81 oceans  shown here



The Never-Ending Story

In order to train the model, you must know up 
front whether the training data came from 
an island or an ocean

Other issues:

• Window length

– May engulf an ocean embedded between 2 
islands (islands are long)

• Sensitivity in crossing shoreline

– Hysteresis nullifies important info



GENE FINDING

ANOTHER APPROACH

The Hidden Markov Model



The Markov Assumption and 

Finite Automata

In a nondeterministic finite automaton, the 
probability of transition from one state B to 
the next C does NOT depend on the 
probability of arriving at the first state B 
from its preceding state A.

This is the Markov assumption on states B 
and C.  



Seeking the probability p of transition from 

one state (A) to another (B) in a 

nondeterministic finite automaton p(AB) 

is the same thing as asking

What is the probability of B given A?

or

What is p(B|A)?
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Another way to think of this:

1. The Markov assumption lets us use a 

nondeterministic finite automaton to model the 

chain processing.  Keep in mind that a transition 

probability out of an automaton state is a joint 

probability conditioned only on the state we are 

in  - this is the Markov condition.

2. In that case, we can parse the states with a 

regular expression



The Markov Assumption

The Markov assumption enabled us to get rid 

of the extended joint probabilities
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Hidden Markov Model

•A set of states (eg CpG island, CpG ocean)

•A set of symbols to be emitted (eg {A,C,T,G} ) 

•A set of emission probabilities for each symbol from each 
state

•An index (eg time, next nucleotide)

•A transition probability between successive states



Hidden Markov Models

•There is a probability of transitions out of each 

state

This is the oceanisland, island ocean 

concept

•There is a probability of emissions within each 

state

This is the transition matrix within an 

island (or ocean)  concept
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HMM Example – the Dishonest Casino
The casino uses two dice, one fair and another loaded with a 50% chance of rolling a six. In 

one of 20 rolls of a single die, the dealer will slip in the loaded die, but keep it in play only 

one in ten rolls.  Can we detect this mischief?



Hidden Markov Models (HMMs)

• Why Markov?

– Because reducing the problem to transitions 

between  states requires the Markov assumption 

for mathematical tractability.

• Why hidden?

– Because only the emission is observed.  It is to 

be deduced what state (hidden from us) 

generated the emission.



BUILDING THE MODEL

Definitions/Notation
Sequence of symbols xi The ordered list of emissions 

observed

The path  The sequence of states which 

generated the observed symbols

Transition probability aij Probability of moving from one path 

position to the next

Emission probability i(b) Probability of the given state i 

emitting symbol b



USING THE MODEL

Sometimes we are interested in the probability 

of all paths that will result in the sequence 

of emissions that we observe. To do this, we 

use the Forward Algorithm

But very often we are interested in the most 

probable path through the data that will 

generate the observed sequence. To do this, 

we use the Viterbi Algorithm



Because of the Markov assumption, the joint probability of an 

observed sequence of symbols, x , and the sequence of states, π, 

can easily be expressed by
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Emission probability of symbol xi in state πi

Transition probability from state πi to state πi+1

Transition probability from start state to state π1

where xix,  πiπ

We may wish to find  the total probability p(x) that we could 

observe x

or 

we may wish to find the most likely path that will emit x, argMax ( , )p x






Prokaryotic 

Gene 

Recognition

A very simple 

example

K

e

S1 S2

A .8 .3

B .2 .7



HMM path probabilities when 

observing the sequence of 

symbols A-B-B



The Probability of All Paths Emitting an 

Observed Sequence

The Forward Algorithm

Define a function relating all joint probabilities up 

to the observation of interest,xi

1 2 ,( ) ( ..... )k if i P x x x k 

Then recurse

( 1) ( ) ( )l l i k kl

k

f i e x f i a  

transition 

from kth to lth

state
Forward variable for the 

lth state at time i+1

Forward variable for the 

kth state at time iEmission of 

symbol xi

from the lth

state



HMM –Forward Algorithm does this:

+

+

= .01036



Most Probable Path

In many problems we seek the most probable path,  Certainly in the 

Dishonest Casino problem, the most probable path is the solution to 

what letters to expect

We seek

* argMax ( , )p x


 

But this is a hard problem…



Viterbi Algorithm

πk(i) is the most probable path ending in state k with 

observation (emission) i

Assume πk(i) is known for all the states k

1( 1) ( )max( ( ) )l l i k kli e x i a  

Then, recursing, 



.6 x .2

.5 x .5

.5 x .5

.4 x .7

.9 x .7

.4 x .7

.9 x .7

.1

P(x,)=0.00784

HMM –Viterbi Algorithm does this:

With this dynamic programming approach, the problem is 

now tractable (of polynomial complexity)



Missing Parameters

• Sometimes we don’t know the emission or 

transition probabilities

• Sometimes we don’t even know the path

We are given only the emissions and we must

infer the parameters



E-M 

As we have done in other cases of hidden 

parameters, we call upon the Expectation-

Maximization algorithm to find the missing 

parameters

Like all E-M

• the solution will be local

• the solution will be sensitive to pseudocounts

• the solution will be sensitive to initial guesses 



The Baum-Welch algorithm is a special E-M 

algorithm that is suited specifically for the HMM 

model.  B-W computes the requisite parameters.

A .8

B .2

A .8
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B .3

A .7

B .3.5

.5
.4
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.1

Baum Welch finds emission 

probabilities

Baum Welch finds transition 

probabilities



• Forward Algorithm gives probability of 

being in a given state at time t (0<t<T) 

given the sequence data thus far

• Backward Algorithm gives a posteriori 

probability that an observation came from a 

given state within the observed sequence 

when the entire emitted sequence is known



The Backward Algorithm 

Implements Posterior Decoding

• Recurse backward from the end of the 

sequence

1( ) ( ) ( 1)k kl l i l

l

b i a e x b i 

for  i = L –1 ….1



The Posterior Probability

of an Observed Sequence

Write product of forward and backward variables. 

This product is the forward probability of arriving in 

the current  state and the backward probability of 

generating the final state, given the current state

( , ) ( ) ( )i k kP x k f i b i  



Posterior Probability Re-written

as the  conditional probability

( , )iP x k 

We can re-write
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This is the ‘guts’ of the BW Algorithm
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Baum Welch

• Use multiple training sequences

• Set parameters to a guess 

• Set A and E variables to pseudo-count

EXPECTATION

∀ sequence j=1…n
• Calculate fk(i) for sequence j using the forward algorithm

• Calculate bk(i) for sequence j using the backward algorithm

MAXIMIZATION
• Add the contribution of sequence j to A (#2)  and E (#3)

• Calculate new model parameters using #1

• Stop when no change



A Strategy for Gene Finding Using an HMM

1. Build a Model

• Understand the gene structure

 Donor and acceptor sites, if applicable

 Intergenic regions

 UTRs

• Decide the order of the Markov model

• Decide whether to go with base, dinucleotide, 
codon, n-mer

2. Train the model on known genes

• Learn with the BW Algorithm

• Transition probabilities

• Emission probabilities

3. Parse (decode) unknown genes using the model



Profiles

• Often we seek a signal that can vary from 

gene to gene within a species; we may have 

simply the consensus sequence for the 

signal.  

• A matching algorithm won’t work, we need 

to detect an instance of the consensus

• PSSMs are well suited for this task



PSSMs

Stormo, Gary D DNA Binding Sites: Representation and Discovery Bioinformatics 16(no 1) 2000, pp16-23
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The HMM can handle the concept of a PSSM.  Stormo* gives 

the example of several promotors from the -10 region that have 

one of two consensus sequences: TATAAT or TATRNT.  The 

PSSM below encodes the sequence TATAAT.



HMM as a Parser

Krough:

• Introns and exons are words in a regular 

language

– A sentence always begins and ends with an exon

– Introns alternate with exons- never two exons or 

two introns in succession

• The HMM (a complicated FSM) can parse this 

language
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After Krogh 1994
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61 possible Codons

Single gene model using codon elements rather than single 

base elements
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After Krogh 1994

Aspartamine  (GAT)  codon model



A GTA GT

After Krogh 1994

Start Codon
Stop Codon

61 possible Codons

IGR

A prokaryotic genome  model



Special Problems with Eukaryotic Gene Finding

•Must train on known intron-exon and exon-intron junctions

•Must find promoter motifs

•Must have ORF awareness



From Bioinformatics The Machine Learning Approach Baldi, P and Brunak, S MIT Press Cambridge 1998

10 States

Here is a circular HMM of 10 

symbols.  As the coding DNA 

string is ‘threaded’ into the 

model, a recurrence of 

nucleotide content is 

evidenced at 8,9,10.

The model length is not a 

multiple of 3, so that codon 

context is not detected, 

although codon content (vis à 

vis random DNA) is, in fact, 

detected



From Bioinformatics The Machine Learning Approach Baldi, P and Brunak, S MIT Press Cambridge 1998

Here are the 9 sets of 

emissions from a 9 position 

circular HMM.  Notice the 

recurrence of the  content mod 

3, implying synchrony with the 

codons, and a more nearly 

accurate representation of 

coding DNA codon content



Higher Order HMMs

• For detection of certain isolated patterns, particularly in a 

promotor, higher order HMMs are appropriate.  In a 

second order HMM, for example, instead of the transition 

C|B, we would have C|B,A

• The higher the order, the more it looks like an exact string 

match

• Consider  A|T,A,T as an application of this idea in a 3rd

order HMM transition



Classical HMM application

•Speech Recognition

HMM applications in Bioinformatics

•Gene Finding

•Protein secondary structure ID

•Protein tertiary structure ID

•RNA structure prediction

•Sequence alignment (particularly MSA)

•Tree construction in phylogeny



Popular  Gene Finders

• HMM (1ST ORDER) : Genemark

• HMM (5TH ORDER) : Glimmer

• ANN-HMM: Grail

• Dynamic Programming: GeneParser 



The ANN and HMM Hybrid Model for Gene Finding

• Combining technologies such as ANNs and 

HMMs can lead to complex, sophisticated, and 

highly accurate gene predictors.

• Sometimes the ANNs and the HMMs are trained 

separately (on different tasks) then combined

• A true hybrid will inter-couple the ANN output, as 

a gate, to the HMM emission, trained as a single 

unit



ANNs: GRAIL INPUTS
• Frame Bias Matrix (frequency of each base in each frame)

• 3-periodicity of nuleotides (Fickett feature)

• Coding sextuple word preferences

– Word preferences in frame 1

– Word preferences in frame 2

– Word preferences in frame 3

• Maximum word preferences in frames

• Sextuple word communality

• Repetitive sextuple word



Grail
ANN Inputs

after Uberbacher and Mural, 1991

GRAIL inputs

14 hidden 

nodes

9 input nodes



Genetic Algorithm modification

15 hidden nodes RE-ARRANGED

9 input nodes

weights, # layers,# nodes, 

parameters

all modified by GA


