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A function of any variable can be represented by a series of 

sines of the multiples of that variable.



The Fourier Series

• Represents any periodic function as a trigonometric  
series

• Trigonometric series converges if indeed the function is 
periodic

• Represents the function as:
– A series of sines and cosines of some fundamental 

frequency and its harmonics

or

– A series of complex numbers that can be resolved into a 
series of Magnitudes and corresponding phase angles of 
some fundamental frequency and its harmonics

Really ,really key alternative



The Discrete Fourier Series

IF f(x) is any periodic waveform, then 

according to Fourier’s Theorem 

Notice the  in the summation; Fourier proved that the periodic 

waveform converges to the above expression in the limit.  

BUT WATCH OUT :  f(x) must be periodic over infinite time.  If it is 

truncated, it is not periodic.



The Fourier Transform

A bilinear mapping for a periodic function 
(usually in the time or space domain) into the 
frequency domain

Periodic function Series of complex coefficients at each 
harmonic 

Fourier Transform

Inverse Fourier Transform

TIME DOMAIN FREQUENCY  DOMAIN
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Euler’s formula, fundamental to all of this:

Proof:

0 1

1

2 1

3

n

n

n i
for i

n

n i





 

 



The continuous Fourier Transform
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The inverse Fourier transform
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Very Simple Example
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A simple periodic function Representation of the simple periodic 
function in the frequency domain.
The coefficient is a complex number. 
Magnitude is shown here in blue as

Fourier Transform

One complex Fourier 
coefficient at 1Hz
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The Fast Fourier Transform

• The Fast Fourier Transform (FFT) was conceived Gauss in 1805, implemented 
for a computer in 1965  by Cooley (IBM) and Tukey (Bell Labs)

• In the 60’s, processors were slow and memory was scarce , slow and very 
expensive

• The algorithm is a discrete transform, and requires that the number of 
sampling points (harmonics or multiples of the fundamental frequency) be an 
integral power of 2

• Exploiting the mathematics at these points, and manipulating the binary 
representation, the complex coefficients are generated efficiently

• The coefficients are accurate at the same data points as the FDFT

• The algorithm runs o(Nlog2N), a dramatic speedup from N2, the efficiency of 
the finite discrete FT, particularly with a large number of data points. For 
2048 data points, 4,194,304 calculations are needed for the FDFT vis à vis 
22,528 for the FFT



Magnitude, phase angle, and power
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The Fourier coefficient is a complex number. We normally don’t think in terms of 

complex numbers and the complex plane.  An intuitive way to think of the 

complex number is a real magnitude associated with a phase angle 
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The dot is a complex number in the complex 

plane

Very often, for a number of compelling reasons, it is convenient to 

think in terms of power, the square of the magnitude 
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Very Simple Example
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A simple periodic function Representation of the simple periodic 
function in the frequency domain.
For display convenience, power, instead 
of magnitude, is shown here because 
power is a real number

2  =f

Fourier Transform Fourier Coefficients



About power
• Power is a real number, not complex

• Power of each coefficient is, mathematically, the square of the magnitude of 

each coefficient.

• The ensemble of powers of ordered coefficients is called the power spectrum, 

or power spectral density (PSD)

Power is calculated as Re2+Im2

Alternatively, it is sometimes convenient to calculate power directly from 

the complex coefficient times its complex conjugate: c c

Note that there is significant information loss when taking the power or 

magnitude of a complex coefficient; all the phase information is lost and 

inverse transformation is not possible.  



f(t)=10sin(2)+5sin(10)+2cos(30)

Magnitude spectrum of f(t)

Practical uses of the power spectrum: 

Teasing meaning from confusing data



Making sense from squiggles……

PSD of a rat EEG



Ad absurdum

Any periodic 

waveform can be 

represented by a 

Fourier series

Assume the skyline 

of Manhattan is 

periodic……..



Information nearly impossible to glean from the time 

series

PSDs of migraineurs showing enhanced photic driving in the first harmonic of 

each driving frequency (z-axis) as well as increasing power in the -band (7-

9hz)



Example of Fourier Transformation in 

Action

Magnetic Resonance Imaging



3 species, each with its 
own gyromagnetic 
ratio 



B0

Species align in a 
stable magnetic 
field B0



B0

Gradient 
magnetic field 
(transient)  
aligns all the 
dipoles 
coherently



B0

Gradient field is removed. Each 
atom precesses as it relaxes, 
emitting an electromagnetic 
field at the Larmor frequency 
(B0)



Antenna receives this signal as 
the atoms precess while 
relaxing to realign in the B0

field:
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Here is the Magnitude spectrum of the Fourier Transformed 
signal at the antenna
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Applications of Power Spectra

• Autospectrum

• Cross Spectrum

• Coherence

• Autocorrelation

• Cross Correlation
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2 Dimensional Fourier Transform
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Spatial Frequency

The Fourier transform can be applied to any 
periodic function.  This need not be a function 
of time but can be a function of density (or 
intensity or energy etc) across space.  Where 
frequency is sec-1, spatial frequency could be, 
say, m-1, or perhaps A-1

1-D spatial frequency 

demonstration



An example of 2-D spatial frequency  power spectrum

Analysis of images of microbubbles aggregating in a glioma over time (left to 

center) and mature glioma without microbubble contrast (right).

Of the 16 spatial frequencies and 256 pixels, eight were found to have strong 

discriminating power, identifying contrast and no contrast in tumors, vis à vis  other 

‘bright’ objects



Many, many applications

• The assembly of data scattered from a perfect 
crystal can be represented by a Fourier 
transform. Theoretically, the inverse transform 
would reveal the underlying structure leading 
to the observed scatter pattern.

• Alas, there are no phase data, only magnitude, 
so an inverse transform is impossible

• But there are workarounds…

• Much more on this in a lecture to come.



Convolution
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The convolution integral:

Flip g  to -

Offset g by t

Integrate the product of f and g



Convolution
• Filtration  in the time domain

• Convolution theorem

– Convolution in the time domain =Multiplication in 
the frequency domain

– Multiplication in the time domain=convolution in 
the frequency domain

• Leakage..multiplication in the time domain 
with a noncontinuous function 



Digital issues

• Sampling

– Aliasing

– Nyquist frequency

– Sample impulse convolution


