Jean-Baptiste Joseph Fourier 1768 —1830

Théorie analytique de la chaleur 1822

A function of any variable can be represented by a series of
sines of the multiples of that variable.



The Fourier Series

Represents any periodic function as a trigonometric
series

Trigonometric series converges if indeed the function is
periodic
Represents the function as:

— A series of sines and cosines of some fundamental
frequency and its harmonics

Really ,really key alternative

or v

— A series of complex numbers that can be resolved into a
series of Magnitudes and corresponding phase angles of
some fundamental frequency and its harmonics




The Discrete Fourier Series

IF f(x) is any periodic waveform, then
according to Fourier’'s Theorem
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Notice the « in the summation; Fourier proved that the periodic
waveform converges to the above expression in the limit.

BUT WATCH OUT : f(x) must be periodic over infinite time. Ifitis
truncated, it is not periodic.



The Fourier Transform

A bilinear mapping for a periodic function
(usually in the time or space domain) into the
frequency domain

TIME DOMAIN FREQUENCY DOMAIN

Y

Fourier Transform

Periodic function Series of complex coefficients at each

harmonic

Inverse Fourier Transform
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Euler’s formula, fundamental to all of this:
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The continuous Fourier Transform

F(w)=5- of f(Hedt

Frequency Domain Time Domain



The inverse Fourier transform

Note: no -

(=5 of F(w)e'”dt

Time Domain Frequency Domain



Very Simple Example

One complex Fourier
coefficient at 1Hz

1.5
1 Fourier Transform

N

-0.5

Amplitude
o
o >
/
S~
Imaginary
o

15 time

Representation of the simple periodic
function in the frequency domain.
The coefficient is a complex number.
Magnitude is shown here in blue as

J(Re?+Im?

A simple periodic function



The Fast Fourier Transform

The Fast Fourier Transform (FFT) was conceived Gauss in 1805, implemented
for a computer in 1965 by Cooley (IBM) and Tukey (Bell Labs)

In the 60’s, processors were slow and memory was scarce , slow and very
expensive

The algorithm is a discrete transform, and requires that the number of
sampling points (harmonics or multiples of the fundamental frequency) be an
integral power of 2

Exploiting the mathematics at these points, and manipulating the binary
representation, the complex coefficients are generated efficiently

The coefficients are accurate at the same data points as the FDFT

The algorithm runs O(NlogzN), a dramatic speedup from N2, the efficiency of
the finite discrete FT, particularly with a large number of data points. For
2048 data points, 4,194,304 calculations are needed for the FDFT vis a vis
22,528 for the FFT



Magnitude, phase angle, and power

The Fourier coefficient is a complex number. We normally don'’t think in terms of
complex numbers and the complex plane. An intuitive way to think of the
complex number is a real magnitude associated with a phase angle

The dot is a complex number in the complex
plane
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Very often, for a number of compelling reasons, it is convenient to
think in terms of power, the square of the magnitude |c
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Very Simple Example

time

A simple periodic function

Fourier Transform Fourier Coefficients

power
|

1Hz 2Hz 3 Hz

frequency 2m o =f

Representation of the simple periodic
function in the frequency domain.

For display convenience, power, instead
of magnitude, is shown here because
power is a real number



About power

* Power is a real number, not complex
« Power of each coefficient is, mathematically, the square of the magnitude of

each coefficient.
 The ensemble of powers of ordered coefficients is called the power spectrum,

or power spectral density (PSD)

Power is calculated as Re?+Im?

Alternatively, it is sometimes convenient to calculate power directly from
the complex coefficient times its complex conjugate: ¢ x ¢

Note that there is significant information loss when taking the power or
magnitude of a complex coefficient; all the phase information is lost and
inverse transformation is not possible.



Practical uses of the power spectrum:
Teasing meaning from confusing data
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Making sense from squiggles

PSD of arat EEG




Ad absurdum

In Figure 5-4a, the series
> 80 -20.31cos(m) -11.42sin(m)
is graphed from O to 27 radians. In Figure 5-4b,
s A the first harmonic,
Any periodic > 20.18cos(Cm) +23.5sin(2wm)
waveform can be is added. In Figure 5-4c, the series is extended
represented by a to include three more harmonics:
. . > 0 cos(Bw)-10.6 sin(3wm)-.3cos(4m)+9.26
Fourier series sinSm) +5.48cos(5m)-1.24 sin(5m).
The Manhattan skyline is drawn in Figure 5-4d
created from the series:

Assume the S!(y“ne >  the fundamental ®, a DC offset of 80, and
of Manhattan is 511 harmonics.
periodic........ -l o "
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Figure 5-42 The synthesis of an assumed-
repeating skyline, summed from 512 components
of sines and cosines of harmonics, weighted by
their Fourier coefficients. You can see that the
series still has not converged by looking at the
construction of the sloping rooftops.



Information nearly impossible to glean from the time
series

PSDs of migraineurs showing enhanced photic driving in the first harmonic of
each driving frequency (z-axis) as well as increasing power in the a-band (7-
9hz)



Example of Fourier Transformation in
Action

Magnetic Resonance Imaging




3 species, each with its
own gyromagnetic







Gradient
agnetic field



\ Gradient field is removed. Each
atom precesses as it relaxes,
\ \ emitting an electromagnetic
field at the Larmor frequency
\\ (8, %)
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Antenna receives this signal as
the atoms precess while
relaxing to realign in the B,
field:
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Here is the Magnitude spectrum of the Fourier Transformed
signal at the antenna
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Applications of Power Spectra

Autospectrum
Cross Spectrum
Coherence
Autocorrelation
Cross Correlation

Coherence =




2 Dimensional Fourier Transform

F(a)=] | f(ey)e ™ dxdy



Spatial Frequency

The Fourier transform can be applied to any
periodic function. This need not be a function
of time but can be a function of density (or
intensity or energy etc) across space. Where
frequency is sec, spatial frequency could be,
say, m, or perhaps A°1

1-D spatial frequency
demonstration

EEEEEEEEEEEEEEE



An example of 2-D spatial frequency power spectrum

——— 70000

Analysis of images of microbubbles aggregating in a glioma over time (left to
center) and mature glioma without microbubble contrast (right).

Of the 16 spatial frequencies and 256 pixels, eight were found to have strong

discriminating power, identifying contrast and no contrast in tumors, vis a vis other
‘bright’ objects



Many, many applications

The assembly of data scattered from a perfect
crystal can be represented by a Fourier
transform. Theoretically, the inverse transform
would reveal the underlying structure leading
to the observed scatter pattern.

Alas, there are no phase data, only magnitude,
SO an inverse transform is impossible

But there are workarounds...
Much more on this in a lecture to come.



Convolution

The convolution integral:

frg=| f()g(t-1)

Flip g to -t
Offset g by t
Integrate the product of fand g



Convolution

e Filtration in the time domain

e Convolution theorem

— Convolution in the time domain =Multiplication in
the frequency domain

— Multiplication in the time domain=convolution in
the frequency domain
* Leakage..multiplication in the time domain
with a noncontinuous function



Digital issues

 Sampling
— Aliasing
— Nyquist frequency
— Sample impulse convolution



