
FastA

An Alternative Strategy For Sequence

Alignment

FastA

• Faster than quadratic time

• Alignment isn’t always optimal

• Hybrid of dot plot, S-W and N-W strategies

• Strategy

– Preprocess 2 sequences to determine the most likely
offset between them. This essentially a local alignment
extending the length of the shorter sequence

– Use that info to define a restricted alignment space and
employ a global alignment within that space

FastA
Preprocessing step-CONCEPTUAL

Runs in QUADRATIC time

• Pick an arbitrary window size, say, 4 nucleic

acid bases (4-mer)

• Note the location of all 4-mers in both the target

and the query.

• Compute the most frequent offset distance

between corresponding target and query 4-mers

FastA
Preprocessing step-ACTUAL

• There are 256 4-mers of nucleotides (44). Create a

table and use the 4-mer to index the table

• Slide the 4-wide window along both the query and

the target. At each 1 base increment, open up the

table cell for the 4-mer in the window and record

– Whether it came from query or target

– The increment (ie the starting position of the 4-mer in

the string)

Start with query in 1st position Move 4-mer window in the query one to the right

1 2 3 4 5 6 7

A T T C G C A

A A T T C G T

1 2 3 4 5 6 7

A T T C G C A

A A T T C G T

1 2 3 4 5 6 7

A T T C G C A

A A T T C G T

1 2 3 4 5 6 7

A T T C G C A

A A T T C G T

Move window another one to right

Now start with the target 1st position and do the same thing.

•This process is of the order len(query)+len(target); it is linear!

•The 4-mer itself can be used as an index or a simple hash function

can be contrived

etc

AAAA

AAAC

…

AATT t:1

ATTC q:1 t:2

…

CGCA q:4

..

TTCG q:2 t:3

TCGC q:3

TCGT t:4

Here is the

resulting table with

the starting offsets

in both the query

and target indicated

for each 4-mer

FastA
Preprocessing step-ACTUAL

• Create a vector of cells, one for each possible offset between the

query and the target. Initialize to 0.

• Walk the table. For every entry with a q, if there is a t or t’s,

compute all the differences (q’s-t’s) and increment the cells in the

score vector indexed by each of those differences. The direction of

the distance is critical.

• Select the highest scoring value in the score vector. Its index (may

be + or -) tells what the most likely global alignment is, with

respect to the main diagonal of the dynamic programming matrix.

AAAA

AATT t:1

ATTC q:1 t:2 -1

…

CGCA q:4

..

TTCG q:2 t:3 -1

TCGC q:3

TCGT t:4

0 0 0 0 0 0

3 2 1 0 1 2 3

2

Count

Offset

This is a catalog of lags

The score vector

FastA
Processing step

The dynamic programming matrix will then have only one diagonal,

offset from the main diagonal by -1.

Query

Target

Main diagonal

for exact match

Consensus diagonal

offset by 1 along the

target

x

x

x

x

x

x

FastA
Processing step

The cells that are shown grey here have infinitely negative values. This forms a
‘channel’ around the offset diagonal. No dynamic programming can proceed.

If there are to be no gaps, we are done. We have a local alignment.

AT GCA T C

A

T

C

T

G

A

T

Query

Target

x

x

x

x

x

x

FastA
But…If we widen the channel, then the dynamic programming can operate

around the cells of the offset diagonal, inserting gaps as needed. The wider

the open cells, the more dynamic programming is required. Our local

alignment is thus improved, and in this case is a global alignment

AT GCA T C

A

T

C

T

G

A

T

Query

Target

FastA
Complexity

• The implementation of the conceptual idea of
sliding would be O(n2) where n is the length of the

longer sequence

• The use of the table lookup in FastA reduces the
complexity to O(n) for an unbiased table

• If the channel around the diagonal for dynamic

programming is opened, then the dynamic

programming costs increase accordingly

