
Expectation Maximization



Expectation-Maximization

E-M

If the underlying governing pdf is known only in 

its general form, and there may or may not be 

missing data as well, we need E-M

– To reconstruct the underlying pdf

– To find missing data based on the underlying pdf



Example:  Missing Normally 

Distributed Data 

• We have 4 data points from a Gaussian 

distribution with unit variance.  2 data 

points are missing.

– 5

– 11

– x

– x



•We need to infer the  parameters of the density 

from which the observations were drawn.  

•We are given one of the parameters in this 

case,variance=1

•We seek the most likely  for the Gaussian density 

function; i.e. we seek ML

•Once we can find the mean of the underlying 

Gaussian distribution (ML ), we can generate the 

missing data



We can take advantage of properties of 

Gaussian densities to make life easier

– The value (arg) of  that yields the least square 

error

is simply the sample mean  
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So, to maximize the likelihood 

estimate of the parameter         it 

is necessary and sufficient to use 

the sample mean for 
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Strategy

• Guess the parameter

• Expectation: Find the expected data, given 

the parameter 

• Maximization: Find the most likely 

parameter, given the data, by finding the 

sample mean

• Repeat and converge to a solution for ML



Example:  Missing Normally 

Distributed Data 
• The first step is to guess at a mean for the pdf. 

Guess 0. The expectation of a normally 

distributed value is the mean. (expectation 

step)

 5

 11

 x

 x



Now minimize the error of the data estimate by using the 

expected  mean (maximization step)

5

11

0

0

Now re-estimate the mean by using the data 
(expectation step)

(5=11+0+0)/4=4



Now minimize the error of the data estimate by using the 

new expected  mean (maximization step)

5

11

4

4

Now re-estimate a new mean by using the data 
(expectation step)

(5+11+4+4)/4=6



Now minimize the error of the data estimate by using the 

new expected  mean (maximization step)

5

11

6

6

Now re-estimate a new  mean by using the data 
(expectation step)

(5+11+6+6)/4=7.5



Now minimize the error of the data estimate by using the 

new expected  mean (maximization step)

5

11

7.5

7.5

Now re-estimate a new mean by using the data 
(expectation step)

(5+11+7.5+7.5)/4=7.75



ML values for subsequent 

iterations  
• 7.75

• 7.875

• 7.9375

• 7.96875

• 7.984375

• 7.992188

• 7.996094

• 7.998047

• 7.999023

• 7.999512

• 7.999756

The iteration is 

guaranteed to 

converge to a 

local minimum!



Types of Problems  for E-M

• Parametric 

– We need to find the parameters of the pdf

• Non Parametric (Most Common)

– We need to find pdf itself



Parametric Problem

Example

(After Mitchell, Machine Learning)



Parametric Example

There are 2 Gaussian processes, mixing.  

We don’t see the processes nor do we know 

the parameters.  (In the example, for 

simplicity we will assume unit variance for 

each, so only the means are the unknown 

parameters)

We have observations, but we don’t know 

about  the two specific processes to which 

the observations belong



EXAMPLE:

GAUSSIAN MIXTURE



Source A 

unknown

Source B 

unknown

Observations from Sources A and B



We need to infer the

parameters of the densities from 

which the observations were 

drawn



EM

Typically, we have data which are  generated by 
multiple, say WLOG, 2,  Gaussian probability 
densities, A and B. 

The data are  a1,a2,a3….,b1,b2….., but  the difficulty is 
that we only observe the unlabeled data x1,x2,x3…., 
where the random variable x could be either an a or 
a b

We need to figure out the parameters  of the entire 
system which parameters of A and B that are most 
likely to have generated the data.   If the system is 
Gaussian, we are looking for  and 2 for each of the 
generating densities. 



EM: The Problem Statement

As stated, we are give the 

observations=x1,x2,x3 where the x are 

unlabeled data from A,B and we are looking 
for the parameter(s) of 

Then the labels that associate x with either a

or b are the hidden data.



A Mystery

We don’t know the labels

But..

If we knew the parameters of each of the 

mother densities, we could calculate the 

probability that each x came from A and the 

probability that it came from B, and choose 

the more probable.



A Solution

We have only the data. How can we know 

what’s what?

Answer: Assume there are labels for each data 

point  xi. These labels, zi,1,zi2,..zi,j, are 

associated with  all j mother densities (in 

this case, j=2), each telling the probability 

that the jth density generated the data point



So…  We need a 2 step process

1. Determine the expectations of the hidden 

variables, given the parameters 

p(Data|Parameters)

2. Determine the best parameters, given the 

data

p(Parameters|Data)

This is the likelihood of the data and we 

wish to maximize this likelihood

Expectation Maximization



EM: In Summary

• We need to optimize the expression 

P(Obs,Hidden| )

Given only

P(Obs|)

by choosing the best 



Getting Started

While we don’t know the initial values of the 

parameters, we can guess

If the guess is reasonable, this process can be 

shown to converge to a local maximum 

likelihood (Dempster,Laird,Rubin)



EXAMPLE  

The Gaussian Mixtures already 

presented

Let the data set consist of a set of points  

[(xi,z1i,z2i)]

Here, the observed data point is x and the hidden 

data are the z’s.  The zi,j represent the probability 

that xi came from the j
th  density

Example after Mitchell, Machine Learning



Probability that x was generated from 

a process with mean A

Probability that x was generated from 

either process with mean A or process 

with mean B

Expectation zA=

Given 2 processes A, B (W.L.O.G.)



Q:What is the probability of any 
xi given process (,2) j?
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particular model 

(Gaussian Mixture):



EXPECTATION Step
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Notice we are normalizing



Since it is a Gaussian 

Distribution, we can define the 

probabilities concisely
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numerator, making it a probability measure



MAXIMIZATION STEP
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So, the Maximum Likelihood estimate of the jth

parameter (j th mean) is the normalized sum of the value 

of each sample weighted by the probability of each 

sample



MAXIMIZATION STEP-explained
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For the the jth parameter (j th mean) :

Mean of the 

observed data

Expectation of each 

data point using the jth

parameter
Sum of the 

expectations



DEMO
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http://bioinformatics.uchc.edu/Bioinformatics_tools/EMdemo.asp

This is a single 

sample of 1000 

points drawn from 

the random number 

generator used in the 

Demo



Non Parametric

Example

After Karp,R University of Washington



The Task

We observe blood types in a bunch of people

– Theses types are A,B, AB, and O

– (the Blood types determined by the Blood Bank are the 

phenotypes)

– The phenotypes are the observed data

The Task:

Infer the frequencies ( ie a discrete pdf) of the blood 

type alleles A,B and O, using known principles of 

genetics, by means of the hidden data



What’s missing?

We need to know the genotypes which 

underlie the phenotypic expression

– The possible genotypes are AA, AO, 

OA,AB,BB, BO,OB,OO

– These genotypes are the hidden data



Experiment:  Observe

Phenotypes

• Determine the blood type of 30 people 

Sample:

– Type A    16

– Type B      2

– Type AB   1

– Type O    11



Create a matrix for the allele 

probabilities

Start with a guess at the probabilities

( ) ( ) .4 .4

( ) ( ) .2 .2

( ) ( ) .4 .4

p A p A

p B p B

p O p O

   
   

   
   
   

‘left’ allele ‘right’ 

allele Initial guess

The goal is to refine the guess into a most likely 

estimate



Now create a matrix for the 

hidden data (the genotypes) 

based on the first guess of the 

allele probabilities

.16 .16 .16

.04 .08 .08

.08 .08

.16

AA AO OA BB BO OB AB BA OO

prob of genotypes determining phenotype A

prob of genotypes determining phenotypeB
H

prob of genotypes determining phenotype AB

prob of genotypes determining phen

 
 
 
 
  
  otypeO



EXPECTATION

NORMALIZE each row so that the row 

entries represent a probability. 

Specifically, each entry in a row represents 

the probability that the entry’s genotype 

(column heading) led to the entry’s 

phenotype (row heading). 



Matrix  normalized

.33 .33 .33

.2 .4 .4

.5 .5

1

AA AO OA BB BO OB AB BA OO

H

 
 
 
 
  
 

.16

.16 .16 .16  .08

.04 .08 .08 



MAXIMIZATION

• Now we wish to recover the probabilities of  the 
alleles being drawn from the population. 
(Remember this was the goal)

• The Probability matrix was set up as a 2 column 
matrix

– Column 1 was the probability of recovering the ‘left’ 
allele from the population*

– Column 2 was the probability of recovering the ‘right’ 
allele from the population

*In this particular example, the left and right allele probabilities are equal



MAXIMIZATION

Now, ask the question: Which entries have 
contributed to a specific left allele, say, A?

(We will ask and answer the same question for all 
alleles, both left and right)

Answer:  For the ‘left’ A, it is

• row 1  (A phenotype) col 1(genotype AA)

• row 1  (A phenotype) col 2 (genotype AO), 

• row 3 (AB phenotype), col 7 (AB genotype)



.33 .33 .33

.2 .4 .4

.5 .5

1.

H

 
 
 
 
 
 

AA AO OA BB BO OB AB BA OO

A

B

AB

O



MAXIMIZATION

• So, compute the probability of the Left A 

allele as follows:

– Sum of entries in row 1 (A phenoype) 

.333+.333=.666

There are 16 individuals with phenotype A

– Sum of entries in row 3 (AB phenotype)= .5

There is one individual with phenotype AB 



MAXIMIZATION

• P(Aleft)= .66716    +   0.5  1= 11.06

• Do the same calculation for Aright, for Bright,

for for Oright,  and for Oleft



LEFT RIGHT

A 11.06 11.06

B 1.7 1.7

O 16.75 16.75

Continuing the calculation for all alleles….

then normalizing…….

LEFT RIGHT

A 0.375 0.375

B 0.058 0.058

O 0.568 0.568



MAXIMIZATION

We thus recover the ‘new’ allele probability matrix

This was our goal

( ) ( ) .375 .375

( ) ( ) .058 .058

( ) ( ) .568 .568

p A p A

p B p B

p O p O

   
   

   
   
   



EM

Now, use the new Allele Probability 

Matrix and 

ITERATE!

Quit when it converges.

http://bioinformatics.uchc.edu/Bioinformatics_tools/EMDemo_alleles.html

Demonstration:



Many applications of EM, but we are interested 

in three.

• Learning transition probabilities in a Hidden Markov 
Model, given only the emissions (observations) as 
training data. There is an efficient (polynomial) 
special-case algorithm, the Baum-Welch Algorithm, 
exploiting the Markov structure of the HMM .

• Learning a most likely motif subsequence given many 
sequences of data, each of  which contains a coding 
subsequence for the protein function of interest.  The 
algorithm is called the Multiple-Sequence 
Expectation-Maximization Motif Elicitation (MEME)

• Unsupervised cluster discovery


