
Each element in a set of data elements 

is assigned to a representative group 

(cluster) , such that 

-elements in each group share a 

common feature  

-elements do not share that feature 

with elements in a different group

CLUSTERS



Why cluster?

Generally a cluster will allow 

characterization of a large portion of the 

data by the cluster itself, or possibly by a 

representative data point

Clustering does not, in and of itself, have 

predictive value.



CLUSTERS
• Often we are given only the data,  with neither rules nor 

labels, and must determine the natural group membership  
inherent in the data themselves, with no prior knowledge of 
an outcome or label.

• Typically the features are numerical coordinates in n-space

• Many other  features could be used, and would obviously 
change the clustering
– Animal, Vegetable, Mineral

– Earth, Wind, and Fire 

– Color

– Shape

– Number of hooves and wings

– Number of STRs   in a locus

– Disease types

– Genes expressed



CLASSICAL CLUSTERING

Clustering is an art and a philosophy.  What 

makes things similar?  For example, how 

would you form clusters of these elements?

• lemon

• strawberry

• lime

• frog

• cardinal

• canary



Choosing the features

By color

• Green

– Frog

– Lime

• Yellow

– Lemon

– Canary

• Red

– Cardinal

– Strawberry

By kingdom

• Plant

– Strawberry

– Lemon

– Lime

• Animal

– Frog 

– Cardinal

– Canary



Choosing k, the number of clusters

• A cluster for every data point is too many

• One cluster for all data points is too few

• What is the right number of clusters?

– Minimization of a cost function vs elucidation 

of attributes



Numerical Data

Important Concept:  k vis à vis  m

• Clusters may occur in hyperspace

– You must be aware of the dimension (m) of the 

space in which you are working

• The n data points will have 1<k<n clusters

• The examples that follow illustrate k clusters 

in  2-dimensional space, but the algorithms 

all hold up for m-dimensional space



Concept: Convex Sets

x
x

yy

Convex Non-convex

Convex:  Every point on a line connecting any two points of the 

set must lie within the set.



Concept: Simply Connected Sets
If  every path q within the set, sharing the same start and endpoints 

with another path p, can be continuously deformed into p, the set is 

simply connected, otherwise it is non-simply connected, or multiply 

connected




p

q


 p

q1

Simply Connected Multiply Connected

q2

q2 can be deformed into p, but q1 cannot



Strategies for Clustering of Numerical Data

• Relation to a reference in each cluster

– k-Means

• Data density and adjacency and sparseness

– Neighbor-joining/Spectral

• Probability of existence

– Model-based

• Topology-learning

– Kohonen (self-organizing) maps



Sometimes there simply are no 

clustering schemes that will solve 

the problem
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Are there actually clusters here ?  Perhaps the clustering reflects 

some attribute other than distance-based separability?



Data Issues

• Types of Data

• Metrics

– Similarities

– Dissimilarities

• Scaling

• Handling Outliers

• Correlations



Caveat: Interval-scaled Data

• Interval Scaled

– Distance between two points in one interval 

same as in another

– Energy to heat 1 gm water from -40 to -38

same as heating 1 gram water from 1,000,000

to 1,000,002

The usefulness of the difference depends on 

the context

From Finding Data in Groups-An Introduction to Cluster Analysis. Kaufman and 

Rousseeuw, 1989



Caveat:

Always look at the distribution!

• Binary

– Symmetric: approximately equal choices-

male/female, married/single

– Asymetric: has 2 heads, has one head--info is 

only in the rarity (cf information theory) -

default in the problem setup should be the  

common occurrence



Different Dimensions

• Units change  patterns change

eg changing cm to yards changes the scale

• Alternative: standardize the data- make it 

dimensionless

– Also has a downside



Caveat: 

Really, do always look at the distribution!

• Be particularly careful of ratios; they are 

exponentially distributed

– Can use interval scaling

– Can take log

– Can do ordinal scaling (rank)

1/x

x



Similarities and Dissimilarities

• Distances are natural dissimilarities and are 

metrics

• Similarity would be “how much do they 

look alike?” - high score means very similar

– Always nonnegative number

– A correlation coefficient is a natural example 

(except for the negative part)

– A common similarity is a  ‘reverse distance’ 

measure , the Gaussian  e(-||x-y||)

– Not always a metric



Definition: Metric

•  is either 0 or a positive real number

• (a,a)=0

• (a,b)= (b,a)

• (a,c)  (a,b) + (b,c)

where a,b,cS

Then  is a metric

dist is an example of a metric

 is a function on a set S

(SS) such that:



Metrics

• Minkowski generalized metric

– Euclidian (q=2) or ‘usual’ : Pythagorean theorem

– Manhattan (q=1) or taxicab: sum of sides

• Pipewrench : maximum
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The Euclidian or ‘usual metric’ is the 

Minkowski with exponent 2 (Pythagorean)

2 2

2 1 2 1( ) ( )d x x y y   
Here’s 

lookin’ 

at 

Euclid



Mahalanobis Distance

The axes are scaled differently. Therefore, the 

significance of comparing dAX to dBX is lost

The Mahalanobis distance takes the 

covariance matrix into account to 

‘standardize’ the scales (expressed in std. 

deviations)

B

A

C

1( ) ( )T

Md   x μ Cov x μ

where x is the vector of the data point and  is the vector of the 

mean point



Distance Between Sets

• Hausdorff distance

( , ) max min{ ( , )}
x X y Y

X Y x y 
 

 
  

 

Find the largest of the distances of every point in 

set X to the nearest point y in Y. 

The Hausdorff distance is not a true metric. Need 

to take max[H(X,Y), H(Y,X)]



Hausdorff Distance

X
Y

Shortest from x1 to Y
x1

x2



Hausdorff Distance

X
Y

Shortest from x1 to Y
x1

x2

Largest of the shortest H(X,Y)



Outliers

Variance 

vis à vis

Mean Absolute Deviation
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Much less sensitive to outliers



Effect of Scale Units in 

Clustering

From Finding Data in Groups-An Introduction to Cluster Analysis. Kaufman and 

Rousseeuw, 1989



Eliminate Scale Effects By Use 

of Variance

• Define z-score
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Confounder: Correlated Data

• When one data point ‘follows’ another 
under an action (is correlated), there is 
redundancy in the data. The second data 
point offers no new information.

• For ideal clustering, we must consider data 
reduction when there is correlation of the 
variables- PCA,ICA



CLUSTERING STRATEGIES

•Bottom up –Hierarchical, Agglomerative

•Top Down- Divisive



Another Viewpoint on Strategy

Data density

vis à vis

Data connectedness



Agglomerative Clustering

• Start with every point, and gather ‘like’ 

points together step-wise



Hierarchical Methods

Example

Every  point is a cluster

• Pick two closest points and make a new 

cluster (Nearest Neighbor concept)

• Repeat over the remaining n-1clusters

• Recurse



Agglomerative Nesting



Gene ExpressionVectors
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1 2 3 4 5 6 7 8

1 0.000

2 2.236 0.000

3 5.000 6.325 0.000

4 5.099 7.000 2.236 0.000

5 5.831 3.606 9.000 10.198 0.000

6 5.000 4.472 4.472 6.403 5.385 0.000

7 4.472 5.000 9.220 8.602 7.616 9.220 0.000

8 4.123 5.099 8.602 7.810 8.062 9.055 1.000 0.000
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From Analysis of DNA Microarray Data, Knudsen,2002



Divisive Clustering

• Start with all data points, then partition 

them according to some rule.



Ways to classify Divisive 

Clustering

• Hardness
– Hard Clustering (Partitioning)

• Each group has at least one element

• Each element belongs to only one group

– Soft Clustering (Fuzzy Analysis)
• Each element has probabilistic membership in one or more 

clusters

• Number of clusters
– Fixed

– Variable

• Representative elements
– Basis of the algorithm

– Not part of the algorithm



A Workhorse: The K-Means 

Algorithm

1. Define k seed centroids  (set of 

coordinates, not a rep. element)

2. Compute f.  
Cost function f = sum of squares of distance from each element 

to its centroid)

3. Quit when no change

4. Recalculate centroid based on current 

elements in cluster

5. Go to 2
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k-Means

Find Closest reference point

Dist to a Dist to b Dist to c

Point 1 4 11 2

Point 2
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Dist to a Dist to b Dist to c

Point 1 4 11 2

Point 2 5 4 12

k-Means



Summary of K-Means Algorithm

• Label each data point with the name of the 

species whose centroid the data point is 

closest to



1. For each species, find the sum of squares 

difference between the member data points and 

their centroids.  

2. Get a cost function by summing the sum of 

squares of each species

3. Minimize this number

4. This is a greedy algorithm-may have to repeat 

many times to escape a local minimum

Summary of K-Means Algorithm



Successive iterations of the k-means algorithm.  Each centroid is a large ‘+’ . Starting 

locations  of centroids were randomly selected.  Each centroid ‘s  color matches  the 

corresponding element in its cluster



The k-means 

algorithm 

performs 

poorly on non-

convex sets



Increasing k perhaps 

looks better, but the 

intuitive notion is that 

there are only 3 

clusters

Remember, cost 

functions are not 

comparable across 

clusterings with 

differing  k’s, so this 

cost of 281 is better 

than  the 380 in the 

previous (k=3) 

clustering, but it is 

not a legitimate 

comparison



Measures of validity must take into account 

the number of clusters, k.  It is easy to make 

the clustering look  good with a very large 

k. The trick is finding the correct k, if 

indeed any specific k is correct.

How well did we do?



Same data- different k’s



Cluster Validity
• The Davies-Bouldin Index accounts for the number of clusters

Here the Davies-Bouldin Indices for the clustering problem in the 

previous slide are plotted for k 4 to 9. The optimum (minimum index 

value) for this problem corresponds to k=7



Model-Based Clustering
Using EM to find the most probable cluster

The concept 

• Create a model by predetermining

– How many clusters

– How the data might be distributed within a 

cluster (typically Gaussian or Poisson)

• Determine the most probable assignment of 

data elements to clusters



For instance…

Suppose we predetermined that there would 

be two clusters, A and B, and the 

distribution of data within the clusters 

would be Gaussian 

For each data point, we need to know 

1,
2
1,2,

2
2, pA, pB

(although with just 2 groups we can figure out 

pB)



Hidden variables

• We could guess at the means (make it easy 

and set 2=1 for both clusters), then see 

what the pA, pB were.

• We could then maximize the likelihood of 

the data given the parameters



But this is old hat…

This is precisely the Gaussian mixture 

problem we encountered when introducing 

the concept of EM in this course. 

We solved this (at least to a local minimum) 

by an iterative process of calculating the 

expectation of the data, given the 

parameters, and maximizing the likelihood 

of the parameters, given the data



To recapitulate…..

• Guess the parameter 

• Expectation: Find the expected data, given 

the parameter 

• Maximization: Find the most likely 

parameter, given the data, by finding the 

sample mean 

• Repeat and converge to a solution for ML



Kicking it up a notch..

Two new issues

1. More than 2 distributions (clusters)

– Not really a problem; we wrote an algorithm 

for k Gaussian mixtures

2. More than 1 dimension

– Consider each dimension a variable in a 

multivariate problem

• If the variables (dimensions) are independent, not a 

problem; consider their product as a single variable 

(dimension)

• If  they are not independent,  it gets messy



Consider  the Gaussian pdf in one dimension

2

1
2

2

1
( )

2

x x

f x e 



 
  

 

The term for variance in the exponent can be re-written 

(using the notation  to represent the mean)
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Now consider the Gaussian pdf in many 

dimensions

Values for x and  become vector-valued, and the term for 

variance becomes a matrix for co-variance

1( ) ( )Tx x   
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And finally, the univariate normalizing constant

must be changed to a more general constant that makes 

the volume under the surface of the multivariate 

density function unity for some p.  The new constant is 

 is the determinant of the covariance matrixwhere
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So here is the multivariate density that 

we must use to maximize the data

We would, of course, need to generalize the Poisson, or any 

other cluster density for that matter, in a similar fashion



Disadvantages of a Model-Based 

Clustering

• Like all EM algorithms, local minima are possible 

• Sensitive to starting positions of the centroids

• Very sensitive to k

• Clusters identified are all convex

• The algorithm in higher dimensions is difficult to 

implement



Advantage

• The clusters found need not be simply 

connected
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When data are brought closer than the minimum radial distance of all 

sets, then the sets can no longer be convex yet retain separability.  

Here the purple and pink sets are still convex, but the green set cannot 

be convex and, at the same time, separate the data.

Still, while it is true that they are not all convex,  each  set is simply 

connected however.  That fact admits other clustering schemes

Changing topology…



Here there are 3 easily identifiable clusters, but  because of non-

convexity,  they do not lend themselves to centroid –referenced or 

model-referenced strategies, particularly as the clusters draw close 

together. 

Other schemes that are motivated by the topology suggested by the 

data, rather than pure distance, are required.  An idea is to base 

schemes on nearest-neighbor relationships or topology-learning 

because the representative sets are simply connected.
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Unknown k: Learning 

(unsupervised) algorithms

Self Organizing Map

(Kohonen Map)



Kohonen Map

• Present a set of data points to a set of  learning 

vectors (neurons ) arrayed in a specific geometry

– The dimensionality of the learning vector corresponds 

to the number of features

• Each neuron will learn the natural clustering based 

on

– Distance from data point

– Number of iterations (becomes less reactive in time)



Special ANN

Competitive dynamics

• Self excitation

• Neighbor suppression



Self-Organizing Map

(Kohonen Map)

• Select a geometry of learning neurons onto 

which is superimposed the data elements

• Train each neuron to assimilate features of 

the nearest data element

• Train adjacent neurons to adapt those 

features partially



Algorithm

• Present a sample

• Find the weight vector ‘nearest’ to the 

sample

• Modify* the weight vector to be ‘like’ the 

sample

• Modify** neighbors likewise

• Present another sample and repeat

*Depends on time elapsed (iteration) 

**Depends on distance from  the  index weight vector



Determination of Neighbors  - 2 schemes



Determination of Neighbors – another scheme



Data Point

Neurons farther from 

data point are less 

influenced by the data 

point

Weight applied to neuron

Influence of data point on neurons 

decreasing over time



Neighborhood influence diminishes over distance

Neighborhood radius diminishes over time

Diminishing weight

Time



LEARNING



A 2-d location problem

Array of weight vectors

Vector migrating to 

look like a 

representative point













The SOM and data topology

100 training vectors, 18 distinct vectors



The SOM and data topology.  Another run.

100 training vectors, 19 distinct vectors



Spectral Clustering

The spectrum of a matrix  is a set of invariants, 

including its eigenvalues, that characterize the 

transformation

Those invariants are part of a profound and elegant 

relationship between a graph representation of a 

dataset and the  clustering solution for that 

dataset



The Concept

• Cluster based on the degree of connectedness among the 

points

• Nearby points strongly connected

• Far away points weakly or not connected

• That principle enables clustering of non-convex sets

• K-Means will perform well only on convex sets



A great reference!

For the  motivation, details, illustrative examples, 
and related variations of Spectral Clustering, in a 
very readable  review, look in

A Tutorial on Spectral Clustering 

Technical Report #TR-149, von Luxburg, Ulrike

Aug 2006, Max-Planck-Institut für biologische 
Kybernetik

The following borrows heavily on his work. 



The Ng-Jordan-Weiss Algorithm 

in a Nutshell

• Map each data point to a graph vertex , with the edges 
representing the similarity between the vertices (n data 
points)

• Represent the graph by a weighted adjacency matrix

• Construct the (normalized) Laplacian matrix for the graph

• Find the eigenvalues and eigenvectors  of the Laplacian 
matrix

• Define k by a steep jump in the values of the eigenvalues

• Take the k columns of eigenvectors corresponding to the 
first k eigenvalues, and read across rows. The k-element 
row is the coordinates of a new data point

• Cluster these  n new data points



The algorithm, step by step

We need a measure of similarity ( in 

contradistinction to distance) so that we can 

relate data points to one another

The Gaussian similarity                       

is popular.  controls the width of the 

neighborhood

SIMILARITY OF DATA POINTS

2

22
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Adjacency
Next, we need to know which data points are adjacent to 

which

We know how similar they are by our similarity measure.  

Now we need to know what defines ‘adjacent’, based 

on the similarity measure. 

Two popular ways to define adjacency:

• - neighborhood: all data points in the ball of radius 

• k-nearest neighbors: the k most similar data points to the index 

point

The algorithm, step by step



3 NN for a data point
3 NN for a different  data point

3 NN graph for all data points 4 NN graph for all data points

There is a gradual shift from local connectivity to global connectivity as the 

number of nearest neighbors increases  



NN  vis à vis mutual NN

A similarity edge is directed.  In the above graph, green 

arrows indicate the 3 NN to the data point A.  Likewise, red 

arrows show the 3 neighbors nearest to data point B.   Note 

however, that while B is adjacent to A, A is not adjacent to B.

In our discussion, we will consider NN, and not mutual NN, 

and consider the graph to be undirected.  The consequent 

‘extra’ edge  at vertex B will be accounted for later in the 

normalization process.

B
A



Adjacency Matrix

• Make an adjacency matrix A where the matrix 

entries are the similarities between n data 

points.  For each point, try the similarity with 

every other point. If the similarity fails the 

adjacency test (i.e. it is not a k-NN or if it is 

not within the -ball), its matrix value is 

assigned 0

• A weight matrix differs from an adjacency 

matrix in that the distances on the edges are 

not binary, and the graph is fully connected

The Ng-Jordan-Weiss algorithm, step by step



Choosing how many NN

• Choose k for k-NN such that data points are 
heavily connected locally, yet have either weak or 
no connections with remote neighborhoods.

• There is a trade-off between weak connection and 
no connection.  The theoretical advantage of a 
weak connection (so that the entire graph is 
connected) is offset by the noise in the solution to 
the eigen problem in a very large matrix that is not 
sparse



Laplacian Matrix

• Next, using the values from the adjacency 
matrix, make a graph Laplacian matrix

– First find the n x n diagonal degree-matrix D, 
that is, the sum of the weights of connected 
edges from each vertex.  Put that on the 
diagonal of D

– Next find the Laplacian, choosing from either 
an unnormalized graph Laplacian, a random-
walk normalized graph Laplacian, or a 
symmetric normalized graph Laplacian

The algorithm, step by step



Graph Laplacians

• Unnormalized

L=D-A

• Normalized Random Walk

L=I - A-1 W

• Normalized Symmetric

L=I - D-1/2A D-1/2

The algorithm, step by step



Eigenvectors

• Compute the eigenvalues and eigenvectors 

of L  (this is a  big job; L is n x n, but is 

sparse)

• The eigenvalues will ascend in order, 

usually rising abruptly at some point. 

• Choose the cardinality of the eigenvalue 

just before the abrupt rise (eigengap) to be k

The algorithm, step by step



from von Luxburg

Eigengap

?



Re-interpret the eigenvectors

• The eigenvector elements are in n rows of n columns

• Evaluate only the first k columns up to the cardinality of the 
eigengap, so there is an nk sub-matrix

• Recast the nk sub-matrix data such that the ith data point is 
given by the coordinates 1 thru k in the ith row, for i=1..n data 
points (eigenvector elements). Restated, the coordinates of 
the ith original number are given by reading across the ith row 
of the eigenvector sub-matrix

• If the graph Laplacian is symmetric-normalized, the rows 
need to be normalized

• The transformed data are now clustered in an k-dimensional 
space.

The algorithm, step by step



New clusters

• These ‘new’ data points will follow a 
natural clustering

• Cluster these. This should be trivial- almost 
visual.  If not, most often, k-Means is the 
algorithm of choice for that.

• The k from the eigengap (ie the number of 
column eigenvectors kept) is the  k is for the 
k-Means clustering .

The algorithm, step by step



Notes/Issues

• For a variety of statistical and intuitive reasons, we 

used the symmetric Laplacian although the 

random-walk Laplacian gave the same results

• Key properties of the Laplacian

– 0 is an eigenvalue of L, with eigenvector of 1’s

– All n eigenvalues are positive, semidefinite, real valued 

with 0= 1 2 3… n

– The more the eigenvalues are closer to 0, the more 

distinct the new clusters will be. Ideally there would be   

k-eigenvectors, each with an eigenvalue of 0

– The matrix is sparse so there are efficient eigenvalue 

algorithms to deal with a huge matrix



Why does this work?

Explanation #1: Intuitive

Consider that a demon wanders randomly, for a very 

long time, from vertex to vertex

The vertices are originally weighted with transition 

probabilities.

Assume that the vertices are connected (ie the 

transition matrix is ergodic). After the demon has 

made a very large number of transitions, the edge 

weights will become the stationary transition 

probabilities,  with the vertices corresponding to 

states.              



Why does this work?

Explanation #1: Intuitive

It makes intuitive sense that the demon will 

ultimately end up in the neighborhood where 

she ‘belongs’ in the limit.

This notion of finding her ‘rightful’ (sci limiting) 

place is tantamount to identifying a cluster to 

which the demon belongs



Why does this work?

Explanation #1: Intuitive

Of course, by now we know that the way to find the stationary 

transition probabilities is simply to find the eigenvectors of the 

original transition matrix.

This overview is somewhat complicated by the fact that the 

original graph might be in m-dimensional space, but the math 

takes care of that.



Why does this work?

Explanation #1: Intuitive

1

rw

A
L I or I D A

D

  

So, how do we get from the graph to a probability transition 

matrix?

By the graph Laplacian!  If, for each node, the probability of 

leaving the node is the specific edge weight / weight of all 

edges leaving the node, then, for the entire matrix, that 

probability is A / D

Now recall the definition of the Random Walk Laplacian:

So, the graph Laplacian is simply the complement of the probability 

matrix



Intuitive Explanation #2

Points close to each other will aggregate around the diagonal 

of the graph Laplacian.  Clusters will tend to aggregate 

separately in this fashion.  These ‘subclusters’ along the 

diagonal will each have an eigenvalue that is zero if the 

clusters are disconnected, and some small number if the 

clusters are connected. The number of these small eigenvalues 

determines the k-arity of the clustering.



Graph Cuts in Brief

Normalized cut(A,B) between cluster A and 

cluster B:
1 1

( , )
( ) ( )

cut A B
vol A vol B

 
 

 

where cut(A,B) is the sum of the weights of all the connections 

between A and B and vol(A) is the sum of the weights of all 

edges that come from all data points in A

For these 2 clusters, the solution is the first two eigenvectors. 

The notion is generalizable to higher k 

From graph theory (and heavily implemented in VLSI design)

is the graph-cut problem  The problem is to determine a cut that 

will partition a graph.



Example of NJW Algorithm results

Raw data colored to reflect intuitive clusters



3-Nearest Neighbors



4-Nearest Neighbors



KNN-8

As the number of nearest 

neighbors increases, the 

connectivity of the graph 

is changing from an 

emphasis on local 

neighborhoods to global 

influence.



Eigenvalues of the Laplacian for 4-NN

Eigengap

Artifact from noise:  eigenvalues 

erroneously were complex-valued



First 2 eigenvectors

3 obvious clusters

Labels are revealed



Labels Revealed

COLOR=ORIGINAL INTENT

SHAPE=CLUSTERING REULT

=POSSIBLE SEPARATE CLUSTER 

FOUND



Intuitive clusters

(Experimental)

Spectral clusters



More Sophisticated Steps

Algorithms can build on the idea that data to be 

clustered have attributes of both density and 

connectedness.

Algorithms that exploit these attributes 

simultaneously are  called multi-parameter 

clustering algorithms.  Typically they are 

agglomerative strategies but not always.


