
Public Databases

Enormous amounts of biotechnological data are now archived 

in the World’s three major cooperative public databases

• European Bioinformatics Institute (EBI)  -UK

• National  Center for Biotechnology Information (NCBI) of 

the National Library Of Medicine -USA

• Genome Net –Japan

The first two provide powerful servers and analytical tools



Databases

Protein Sequences

NonRedundant
These entries embrace only those sequences that are annotated; that is,  they have been 

completely determined and have been proven to be a gene. Their function and 
homologies have been characterized. No genes (theoretically) are duplicated.  
Alleles?

On May17, 2016 there were 87,545,396 sequences in the NR database



nt

nucleotide

All non-redundant GenBank+EMBL+DDBJ+PDB sequences (but no 

EST, STS, GSS, or HTGS sequences)

1.6 million sequences

/databases/blastdb/db1/ncbi

nr

peptide

All non-redundant GenBank CDS 

translations+PDB+Swissprot+PIR+PRF

4.7 million sequences

/databases/blastdb/db1/ncbi

swissprot

peptide

SWISS-PROT protein sequence database

237,000 sequences

/databases/blastdb/db1/ncbi

pataa

peptide

protein sequences derived from the Patent division of GenBank

380,000 sequences

/databases/blastdb/db1/ncbi

patnt

peptide

nucleotide sequences derived from the Patent division of GenBank

3.7 million sequences

/databases/blastdb/db1/ncbi

pdbaa

peptide

protein sequences derived from the 3-dimensional PDB

29,318 sequences

/databases/blastdb/db1/ncbi

pdbnt

nucleotide

nucleotide sequences derived from the 3-dimensional PDB

7,051 sequences

/databases/blastdb/db1/ncbi

est_human

nucleotide

Human subset of GenBank+EMBL+DDBJ sequences from EST div

~ 8 million sequences

/databases/blastdb/db1/ncbi

est_mouse

nucleotide

Mouse subset of GenBank+EMBL+DDBJ sequences from EST div

4.8 million sequences

/databases/blastdb/db1/ncbi

est_others

nucleotide

Non-redundant database of all other organisms GenBank+EMBL_DDBJ EST 

sequences

~ 11.9 million sequences

/databases/blastdb/db1/ncbi

gss

nucleotide

Genome Survey Sequence, includes single-pass genomic data, exon-trapped sequences, 

and Alu PCR sequences

~ 10.5 million sequences

/databases/blastdb/db1/ncbi

sts

nucleotide

Non-redundant database of GenBank+EMBL+DDBJ STS divisions

922,406 sequences

/databases/blastdb/db1/ncbi

month.aa

peptide

All new or revised GenBank CDS translations + PDB + SwissProt + PIR + PRF 

released in the last 30 days

200,216 sequences

/databases/blastdb/db1/ncbi

month.nt

nucleotide

All new or revised GenBank+EMBL+DDBJ+PDB sequences released in the last 30 

days

114,786 sequences

/databases/blastdb/db1/ncbi

mito.aa

peptide

database of mitochondrial sequences

2,222 sequences

/databases/blastdb/db1/ncbi

mito.nt

nucleotide

database of mitochondrial sequences

129 sequences

/databases/blastdb/db1/ncbi



alu.a

peptide

translations of select Alu repeats from 

REPBASE, suitable for masking Alu 

repeats from query sequences

1,962 sequences

/databases/blastdb/db1/ncbi

alu.n

nucleotide

select Alu repeats from REPBASE, 

suitable for masking Alu repeats from 

query sequences

327 sequences

/databases/blastdb/db1/ncbi

vector

Vector subset of GenBank (R), NCBI

911 sequences

/databases/blastdb/db1/ncbi

yeast.aa

peptide

Yeast amino-acid sequences

6,298 sequences

/databases/blastdb/db1/ncbi

month.est_human

nucleotide

non-redundant database of Human 

GenBank+EMBL+DDBJ EST sequences

61,643 sequences

/databases/blastdb/db1/ncbi

month.est_mouse

nucleotide

non-redundant database of Mouse 

GenBank+EMBL+DDBJ EST sequences

4,132 sequences

/databases/blastdb/db1/ncbi

month.est_others

nucleotide

non-redundant database of all other 

organisms GenBank+EMBL+DDBJ EST 

sequences

211,077 sequences

/databases/blastdb/db1/ncbi



Search Engines

Searches can find 

• local and global alignments of two pairs 

• multiple sequence alignments. 

• structure 

proteins are characterized by their 3-

dimensional structure particularly by motifs.  

(Finding homologies of motifs is called 

threading)



Identity Search

If we have discovered some protein (or so we think), 

and we have sequenced all of its amino acids, we 

might want to know if we have indeed discovered 

this or if someone else has first

If we assume that all the known annotated proteins 

are registered in an annotated database, such as 

NR from NLM or from SP (Swiss Protein) 

databank, by searching the larger of the two or 

both, looking for an identity (exact match) we 

would have our answer.



The Content of the Databases

But there are reasons why we might not get the right 
answer regarding its existence:

1. If it has been discovered, perhaps it has not been entered into any 
database.  

2. Perhaps it has been discovered and entered some other database, 
but it is not fully annotated and does not exist in these 2 annotated 

databases.
3. But we need to think past an identity search and consider a homology

search. Suppose our protein has 1000 amino acids and varied by just one 
from a protein in the database. In that case an identity search would fail 
but a similarity search would score very, very high



Similarity Search
(Homology)

If we could address the similarity issue, that is, our 

protein sequence is “like” some other protein 

sequence, then we stand to learn a great deal more.

Of course we need to define the word “like” in such 

a way that we can actually put a number on it.



Similarity

We must define our goal a little more 
precisely  

– Do we want to find other proteins that are like 
our protein in specific regions (a local
alignment) ?

– Do we want to get “big picture” sense of the 
whole thing, by fiddling with our protein 
sequence a little bit (inserting gaps) so that we 
have a high scoring global alignment.  



Dynamic Programming Algorithms are 

Polynomial

The S-W and N-W methods give the right answer 

but are exhaustive. 

• The good news is that these run in polynomial 

time O (n2). .  

• The bad news is for a 500 million amino acid 

database, this could take a while.  
Say the the average alignment length (protein) is n=1000. Then 

it would take (5x108 sequences)((103)2length)  time



We Need a Strategy

The answer to this is to come up a strategy to do 
both similarity and identity faster than polynomial 
time.
Remember that an heuristic is not guaranteed to give the best answer, 

but it will always give an answer.  

If we are smart, we set things up so that all errors accumulate in our 

favor.  

As is always the case, if we want speed in a 
heuristic, we may have to give up sensitivity, and 
conversely.



Basic Local Alignment Search Tool
BLAST

Let us discuss a very robust and rapid way to search 

a database – BLAST

• BLAST is fast.
At one extreme, BLAST opts for speed but relinquishes sensitivity, 

while at the other extreme, the Smith-Waterman is slow, but very 

sensitive.  Other searching tools, such as FastA, are somewhere in 

between.  

• BLAST can run proteins (BLASTp) or Bases (BLASTn)



BLAST Algorithm
CONCEPT

• Don’t waste time looking where there is no chance 

of getting a high alignment score; instead, find 

those locations in the database that have the 

potential to provide alignment

• Explore the edges of areas of small local  

alignments, seeking longer alignments until 

incorporating edges no longer improves the score



BLAST Algorithm
• Preprocessing

– Index the query** string for all words

– Maintain a table pointing to the locations of those words in 
the database. 

• Run-time processing
– Break up a query sequence into overlapping small words, 

find acceptable neighbor words

– look up the locations of all 3-letter words and their neighbors. 

– Extend  the word  and neighbor words using local alignment 
and no gaps until no longer feasible 

• Post Processing
– Compute alignment statistics for all alignments within a 

certain confidence level

**Newer algorithms actually index the entire database (target string) .They make a hash table, which is much 

smaller and faster than a full table lookup. Typically the hash function is modulo some appropriate prime 

number

•BLAST-like Alignment Tool (BLAT). (originally suggested by Altschul et al)

•Sequence Search and Alignment by Hashing Algorithm (SSAHA)

•MegaBLAST



BLAST Algorithm
Preprocessing Details

• A “word” is selected of a specific length. The 

default length is 3 amino acids, but it is a user 

parameter

• Every overlapping query sequence of 3-letter 

words is indexed into a table.  

• The target database is large (163 million 

overlapping words of width 3) but the 

preprocessing is still linear



RunTime Details

• Potential neighbors are defined as all of the 

words that arise from changing each of the 

letters in the word to another possible letter. 
Restated, if there are 20 amino acids and we have 3 

letters, the number of possible neighbors is 203 or 

8,000.  

We have studied many algorithms for efficient lookup 

of exact matches. We are looking for exact matches 

for our 3-mer neighbor words.



SCORING



Run Time Details-Nucleotide Search

What does ‘Acceptable’ Mean?

If we are doing a nucleotide search, a basic 

scoring scheme : +1 for match, -1for 

mismatch suffices. No substitution matrix is 

used.



Run Time Details

Neighbors

We must  define a “real neighbor” by determining 

whether a potential neighbor deviates from the 

original word* by an ‘acceptable’ amount .  

* Typically the word length for amino acids is 3, for DNA is 11



Suppose the query looks like this:

…AIHPFSQ…….

And the target (database) contains: 

….ARHPFSTAHAFSQ…..

…AIHPFSQ…….

As we slide along the query string, we examine the 3-mer HPF

The idea is to find all the locations in the target that contain the selected 3-mer, but 

also, we wish to identify which other 3-mers of 8,000 possible 3-mers look similar to 

HPF. If they are suitably similar, we will also use them to query the database.

What does ‘similar’ mean? The substitution matrix gives us a cost for replacing one 

amino acid with another. Using a similarity matrix (substitution matrix) to test all 

8,000 possible 3-mers against HPF, we will get 8,000 similarity scores. Those 

whose similarity to HPF is above an arbitrary threshold* will be selected.  These are 

called neighbors, and it is these neighbors that are used to query the database in 

addition to the 3-mer HPF itself.

Run Time Details

Neighbors

The actual value is defaulted in BLAST to13; however, this is a parameter () that can be 
set by the power user.  



A

R

N

D

C

E

Q

G

H

I

L

K

M

F

P

S

T

W

Y

V

A R N D C E Q G H I L K M F P S T W Y V

Example of a matrix for determining similarities between 2 amino acids



Consider the 3-mer HPF:

Its similarity score, when compared to itself, using the matrix in the previous slide, is:

H  P  F

H  P  F   =21

8   7  6

H  P  F

H  V  F   =12

8  -2  6

H  P  F

H  L  F   =11

8  -3  6

H  P  F

H  A  F   =13

8  -1  6

Now look at some possible neighbors.  Of the three 3-mers shown as possible 

neighbors, only HAF meets the threshold and is kept as a neighbor.

In addition to the one neighbor found (HPF) out of the 3 potential ones 

tested, there are likely to be several more, typically  20-50  in all.

Finding Neighbors



Considerations

Substitution Matrices

• The substitution matrix is the linchpin of the 

similarity search.  Fundamentally it is a 

statement of how alike two amino acids are. 

Many hydrophilic amino acids can be 

swapped with other hydrophilic amino acids 

without unduly deleterious effects on the 

resultant  protein structure.  

• How do we know that?  - observation.  



Considerations-PAM Matrix
Dayhoff and Point Accepted Mutations

Margaret Dayhoff did global alignments on proteins 
that modeled evolutionary rates.  The various 
proteins chosen represented different points along 
the evolutionary scale.

– The number of mutations from one sequence to the next 
is called the evolutionary distance. 

– The sequences are 1 PAM distant if s1 is changed to s2

with an average of 1 amino acid change/100 amino 
acids in the sequence

• PAM matrices are numbered by PAM distances-
large numbermore evolutionary distance



Considerations-BLOSUM Matrix
Henikoff and Henikoff 

Block Substitution  Matrix
BLOSUM

• Prosite database is organized by 

domains/families of proteins

– ~1000 entries (hand curated) at that time*

• A block is an ungapped local MSA from a 

group of related proteins

– BLOCKS database has ~1200 such 

blocks,derived from Prosite.

*Release 20.129 of 26-Jul-2016 contains 1766 documentation entries, 1309 patterns, 1165 profiles and 1180 ProRule



Considerations-BLOSUM
Henikoff and Henikoff 

Block Substitution  Matrix
BLOSUM

• Henikoff and Henikoff calculated the 

frequency of mutation from one amino acid 

to the next in this BLOCKS evolutionary 

conserved system and compared the 

frequencies to a background rate

• Came up with the log-odds ratio



Substitution Matrices in General

All substitution matrices used in BLAST are based on the log-odds of a 

substitution in relation to the background frequencies of the query and 

target amino acids.  The score of the substitution from amino acid i to 

amino acid j, si,j,  is computed as  

,

,

ln
i j

i j

i j

t

p p
s




where t is the transition frequency  and pi and pj are the background frequencies.  

is a scale factor whose value does not affect the overall relationships of  scores but 

whose actual value causes the normalization such that  

 figures prominently in interpreting the significance of matrix substitution scores

1ijt

i jp p e





Considerations-BLOSUM

There are number of BLOSUM matrices 

provided to BLAST users.  

• They are numbered according to 

sensitivity/generality

• The default is BLOSUM-62. 



A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4

* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1

BLOSUM62

MATRIX



Considerations

Which Matrix?

• BLOSUM-62 is the default BLAST 

substitution  matrix, however one can 

choose from many other PAM or BLOSUM 

matrices.  

• Alternatively, one can pick some other 

structurally related matrices rather than 

evolutionary related ones

– RISLER matrix 

– Identity matrix.  



Run Time Processing Details

Finding Hits

Given a query string  

• For each sliding query word, find its 
neighbors.  

• The word and its neighbor words are used 
to do a database lookup, finding the 
locations within target sequences in the 
database where these words occur.  



Hits

….ARHPFSTAHAFSQ…..
…AIHPFSQ…….

Here is an alignment of HPF in the query with the target database.   Note that there 

is also an alignment of suitable similarity with one of HPF’s neighbors, HAF

….ARHPFSTAHAFSQ…..
…AIHPFSQ…….Extending the local alignment to the right 

increases the score by 4, so the alignment 

score is now 25 

….ARHPFSTAHAFSQ…..

…AIHPFSQ…….Extending the local alignment to the left 

decreases the score by 3, so the alignment 

score is now 22 



Run Time Processing Details 

Extending Hits
Extension: 

• Score the query word (or a neighbor)  lined up 
with the target word (again using the substitution 
matrix)

• Extend the width of both the query and the target 
by 1 residue and recompute the score. Gaps are 
not allowed in this example.

• Continue the extension, now on the opposite side 
and recompute  



Extending hits

….ARHPFSTAHAFSQ…..

…AIHPFSQ…….Extending the local alignment to the right 

increases the score by 4, so the alignment 

score is now 25 

….ARHPFSTAHAFSQ…..

…AIHPFSQ…….Extending the local alignment to the left 

decreases the score by 3, so the alignment 

score is now 22 

….ARHPFSTAHAFSQ…..

…AIHPFSQ…….Extending the local alignment to the right 

decreases the score by 1, so the alignment 

score is now 21 

….ARHPFSTAHAFSQ…..

…AIHPFSQ…….Extending the local alignment to the left 

increases the score by 4, so the alignment 

score is now 25 

The process continues until extension degrades the local alignment score



Run Time Processing Details

When to Stop Extending
• Define the Maximal Segment-Pair (MSP) 

as the alignment* in which neither 

extension nor contraction can improve the 

score. Informally also called a hit. 
A user parameter can limit how far the extension 

continues to be tested in the face of diminishing 

score

• Keep this MSP for later consideration

*Smith-Waterman local alignment, e.g.



Post Processing Details 
The Karlin-Altschul-Dembo Statistics

We get an alignment or many alignments for the entire query 
sequence, each associated with a score.  

Now what?



Alignment Score– What does it mean?

Could the score of this hit have happened if the 
sequence were to appear randomly, with no 
biological significance?

The lower the probability of a random match, the 
more we believe in a biological relationship



Karlin-Altschul

A sophisticated analysis of this very question was 
put forth by Karlin and Altschul*

The analysis is  explained masterfully in Mount’s book
Bioinformatics, Sequence and Genome Analysis Second Edition, 

David W. Mount, Cold Springs Harbor Laboratory Press, NY 
2004

with excellent mathematical framework from 
Introduction to Computational Biology, Maps, Sequences and 

Genomes Michael S Waterman, Chapman and Hall/CRC Press, 
Boca Raton 1995

*Methods for assessing the statistical significance of molecular sequence features by using 
general scoring schemes

Proc. Natl. Acad. Sci. USA

Vol 8, pp 2264-2268, March 1990

Evolution



Significance of a Hit
To figure out whether an extended hit is of any 

importance, compare its score to what the best 
possible score would have been  if the same 
sequence, given the same base (or amino acid) 
composition probabilities, and of the same length, 
were to occur with random bases (or amino acids)

If the score of the extended hit  is better than the best 
possible random score*, chances are the hit is not 
random, but rather, is significant.  The better the 
score beyond that, the lower the chances of the hit 
being random (the tail of the CDF describing the 
probability is approaching zero asymptotically)

*All else being equal



Significance of a Hit
In order to accept that proposition, we need to know 

• How likely a random match is in the context of the search 

environment*.  Restated: What are the considerations that 

account for the size of the query string to be matched and 

the target string(s) in the database against which the query 

string will be matched, and the scoring scheme employed?

• How maximal scores** are distributed in the context of the 

above.  

*i.e., all things NOT being equal
**The theory begins with the length of a match. Via a scoring scheme, the length of the 

match becomes the score of the alignment



Random or Real?

Our strategy to find the significance of a hit 

involves:

• Develop the theoretical basis for assessing the probability 

of a run of matching letters  (hence a score) into a concrete 

statement of probability

• Draw on preexisting knowledge about probability 

distributions to create an formal expression for the 

probability distribution for database MSPs



Remember, in BLAST, we need to 

consider this question:

Are there any scores of alignments arising 

from naturally occurring sequences that are 

significantly higher than those that are 

artificially generated?  If so, what is the 

probability of such an alignment ?



Jumping to the denouement..

.

• We convert the idea of a match-length into match-score, using some sort of 

scoring scheme.  Each scoring scheme will yield a normalizing parameter for 

use in the final expression for an expected score (Karlin-Altschul theorem).

• By making a simplifying assumption, we derive the Karlin-Altschul expression 

for the probability of finding some score that exceeds a specified score. This is 

what we ultimately seek to answer the question ‘how  probable is it that the 

query sequence could find a match of some score s or higher, purely by chance 

in the database?’

• Using the modal and decay parameters from the Erdös and Rényi model for 

matches, we substitute  into the expression for the Gumbel survival distribution 

to arrive at an expression for probability of a match at random.



OUTLINE*

Significance of an Alignment in BLAST

• Determination of the expected length of the longest identity alignment (match) in a set of 

trials  if nucleotides were produced at random at the same frequency as occurs naturally

• Change  in parameter convention to make expectation of longest match in matching trials 

relevant to nucleotide database searches

• Surrogacy of alignment score for match length: the expected (mean) extreme score

• Changing expectation  of maximum length (now maximum score) into a probability using 

Poisson distribution as the intermediary

• Distribution of that probability

– Extreme values: empirical evidence for  probability distribution: the Gumbel distribution

– Evident Gumbel distribution for the expression for probability theoretically derived

– Tying Gumbel distribution mathematically to the observed probability distribution  and the expression of 

probability in the context of a Gumbel distribution

• Back to expectation of HSPs and E scores

*The following development follows Mount’s development of this complicated issue very closely. 
Bioinformatics, Sequence and Genome Analysis Second Edition, David W. Mount, Cold Springs Harbor Laboratory Press, NY 2004



Runs of matches

Consider matching two strings, say, nucleotides. The probability of 

a match  is p in each position. Therefore, it stands to reason that the 

joint probability for a run of R positions, is pR



The expectation of the number of consecutive 

matches (runs) R in n possible match-up trials is 

given by

where p is the probability of a single letter match.

If the longest run is unique, then

1/log ( )n pR n
If the match-ups were Heads/Tails with a fair coin, p would be .5 and the answer would 

be R=log2n.  For match-ups of nucleotides that are equally probably (not the case in 

nature) p would be .25  and our expression would be R=log4n. 

(# ) RE runs of length R np

1 nR
np

Solving for Rn,

Erdös and Rényi
On a New Law of Large Numbers



Sidebar: Moving between Number 

Systems in the Log World

Very Handy Mathematical Manipulation

log log / logN e ex x N

So, for example, what is the log2 of 25?

Answer: log225= ln(25) / ln(2)=3.219 / 0.693 = 4.64

This makes sense because we know in our heads that log2 of 16 is 4 and 

log2 of 32 is 5



The Probability of a Hit Being a 

Random Sequence

• The theorem of Erdös and Rényi estimates 

the number of consecutive same outcomes 

(sci matches), given a sequence length and 

the probability of the outcome.

• In our case, the outcome would be a letter in 

the query sequence  matching* a letter in 

the target sequence

*In the context of a definition of a ‘match’ (similarity, for example) 



The Probability of a Hit Being a 

Random Sequence

So, how long a run (R) of pre-specified letters in a string of 

length n might we expect?

Answer:

But we can slide the query (length m)  along the target length 

n, so our space to find a longer run of matches is extended.

So our revised answer, accounting for the sliding*, is

1/log ( )pR n

1/log ( )pR mn

*We are not going to bog down on the problem of sliding off the ends- perhaps in  a higher level course



Search Space

• m is the query length

• m is the target length

• mn is the search space

What about the ends, particularly if the query 

is very long?

L is the average length of an alignment 

So, the effective search space is (m-L)(n-L)



A C G G T G T G A A G C T A

C

A C T T

A C T TC A T C G G G C T C A A T

Many single letter matches occur here, particularly with sliding, 

but there is only one match-up of R (run length) 4, seen  after 

sliding the query string to the right by 3 letters

In fact, this is a local  alignment.  For this alignment, in this search 

space, Erdös and Rényi’s theorem would predict an expected length 

of 4.17.  Actually, adjusting for end-effects, the expected value is 3.9  



Waterman

1/ 1/log ( ) log ( ) .577log( ) 0.5p pR mn q e   

Arratia ,Gordon and Waterman et. al. refined this formula to 

account for the expectation of a non-match and some other tweaks

The values of p and q depend on base composition (for example, 

0.25 in DNA), reflected in K.  The expression is then simplified to 

1/

1

( ) log ( )

ln

ln

(

(
)

)

)
(

p

p

E R Kmn

Let

the Rn
Kmn

E










The above then relates the expectation of R (the longest match) to the ln 

of the product of query and target lengths. Restated, this is the mode. The 

formula needs to include another term if it is to consider mismatches.

log log / logN e ex x N

Because



Behavior of Score

Now, taking this result 
ln( )

( )
Kmn

E R




and recognizing that the expectation of the longest match length R is 

directly related to the expected maximum score S, it is ok to write

ln( )
( )

Kmn
E S




where the value of K may again have been tweaked based on the 

scoring rules or scoring matrix.    

E(S) is the expected score, or the mean score.



One more possible step…

The theory developed so far estimates the mean score in a search 

space of size mn with parameter K

But we are interested in the probability of a score, not the score 

itself. Specifically we would like to know how probable would hits be 

where the hits have a score that would exceed some score S.

The key is in the Poisson distribution.  It is the ‘counting’ distribution.  

It tell us that, given some mean number of events in a specified time 

period, what the probability is that there will be c occurrences in that 

time period.

integer



Poisson Density

( )
!

c

p c e
c

 

Note that the value of the random variable in this 

Poisson density is an integer. Accordingly, we signify 

this by writing p(c), rather than p(x) as we do for a 

continuous  r.v., usually denoted by x

The is the parameter  and the variance is 

likewisemean 



What if we asked the probability that no score x would exceed some 

given score S

We can model this in a Poisson distribution : ( )
!

c

p c e
c

 

where c=0:

0

(0)
0!

p e e  
 

But we know what  is; we just now derived it from developing the 

Erdös and Rényi theorem: ln( )
( )

Kmn
E S 


 

So, the probability that no score would exceed S, then, is:
( )( )

xE S Kmnep S x e e
   

And the probability that some score would exceed S, then, is:

( ) 1
xKmnep S x e

  

The above equation is a major result; we have now traveled the road from expected  

run-length to the probability of one or more scores exceeding a threshold.



A Different Perspective:

Extreme Values

Keep in mind that we have culled out the highest scoring pairs from all 

matches.  This changes the statistical framework.  We note that these 

scores do not appear to distribute normally, but instead appears to exhibit 

an extreme value distribution.  This is consistent with the nature of the 

random variables being distributed (just high sores, not all scores).



Mean 0.11

Median 0.07

Standard Deviation 3.63

Sample Variance 13.17

Kurtosis -0.07

Skewness 0.02

Sums and Averages 

obey the Central Limit 

Theorem:

Sums drawn from any i.i.d. 

samples will approach a 

normal distribution in the limit.

Here the i.i.d. process was 

normal to begin with, but the 

CLT applies to any i.i.d. 

process (uniform,Normal, 

Poisson etc).

Experiment: 
Generate 100,000 

random variables. 

Collect 2000 samples 

(no replacement), each 

being the average  of 

50 random variables.

A NUMBER EXPERIMENT



Mean 55.85

Mode 54

Standard Deviation 11.86

Sample Variance 140.56

Kurtosis 2.94

Skewness 0.92

Extremes (maxima, minima) do 

NOT obey the Central Limit 

Theorem; they obey the 

Extreme Value Theorem

Here the i.i.d. process was also normal to 

begin with. In fact, the raw data are the 

same as the previous slide

Find the maximum 

instead of the 

average for each of 

the very same 50 

data-pt samples.

A NUMBER EXPERIMENT continued 

Note



The Extreme Value Theory tells us that the 

distribution of HSP scores must be convergent to 

one of three extreme value distributions:   

Fréchet, Weibull, or Gumbel 

The most likely is a Gumbel distribution 

because, unlike the others,  it is not constrained 

on the x-axis.

HSPs are maxima



GAUSS
GUMBEL

DENSITY 

FUNCTIONS

P=.11

P=.025

Mode 

Not the same as the mean 

The Extreme Value Distribution



• The density is precisely specified by the Gumbel 
distribution

– Developed by Gumbel for extreme statistics

Behavior of extreme numbers

The Extreme Value Distribution

2
2

2

1
( ) maxima

( )( )

( )
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e

x

x

x e

x e

f x e e for

standardized formf x e e

f x e










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 

 
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=2.87

=0.322

2
2

2

1
( )

xx

ef x e e











 
  
 

 
   

  
      

Experimental data fitted by a Gumbel EVD



Cumulative Distributions Functions 

(CDF)

• When you need a total probability of all 

events leading up to an event of interest, 

you need a cumulative distribution, not a 

probability density function.



Gaussian Density and 

Cumulative Distribution

pdf

cdf



Gaussian Cumulative Distribution Function (cdf)

( )

( ) .92

( ) .08

P cdf p x dx

p x b

p x b

 

 

 



b
x



The Extreme Value

Cumulative Distribution Function

To obtain the cumulative distribution 

function, i.e. prob (score < x), we must 

integrate the standardized density function

x xx e ee e
   

and, as you would expect, the survival curve is 

1
xee



This expression is a major result, giving a formal structure to the 

result derived from Erdös and Rényi. It now remains to tie the two 

together 



Gumbel Survival Curve Adjusted

( )
( ) 1

xep S x e
    

where   is the mean (actually the characteristic, or modal, 

value)  and  is a normalizing parameter (decay constant)

The Gumbel distribution has moments just as most distributions do: a 

mean  and a standard deviation .  These moments can be directly tied to 

the parameters also characterizing the Gumbel distribution, the mode 

and the decay constant . This  can also be derived from the substitution 

matrix as a normalizing factor. 

So, to express the survival function in terms of experimental parameters, 

we can write



Simplification to get a final 

expression

Remember from Erdös and Rényi that the modal value  is ln Kmn



( )
( ) 1

xep S x e
    

ln( )

( ) 1
Kmnx

ep S x e


 
  

( ) 1
xKmnep S x e

  

( ) lim 1 x

x
p S x Kmne

xKmnee  



 
    

 


 

Compare this with the result from Erdös and Rényi !!!!

Finally, a very practical simplification to clear an exponent layer



p is the 

probability 

of any 

score  x

The Extreme Value

Cumulative Gumbel Distribution Function

Improbability of Random High Scores (Survival)

( )
1

xe

x score

p e
  



 

p

x

Highly improbable

Highly probable



Summary

• This last relationship gives  us  the 

probability that a score in excess of a 

certain value would happen randomly.

• The distribution of that probability is not 

normal, but is an EVD

• The larger search space, the larger the 

expectation of a match



The BLAST E-value

• This is different- it is the number of 

matches that exceed the mean extreme score

• We have already identified the mean 

extreme score as E(S). So the E-value is the 

that expected number of hits with score  S 

but with database size D



• The E-value is the expectation of a count; i.e., the 

expected, or ‘average’, of the number of 

alignments that are expected to occur by chance 

that would exceed the expected score .  It should 

be a very small number if the match is not random

• p is the probability that at least one alignment 

exceeds the expected score  It is the Poisson 

probability c hits, with a scores  S

So, is E a Count or a Probability?



Relating Probability to E-Value



Plotting the E-value  vs p

E

p

E

p

Slope1

pE

Plugging in numbers, one can see 

that, for values of E  .05, p and 

E are very close and below E=.01 

they are essentially the same



E vs P

• The BLAST output lists E values. We are careless in thinking of them as probabilities; they are not! 

But any E value > .05 would be discarded anyway, so  calling E values ‘probabilities’ is OK in that 

context

• Consider the POMC protein of the chicken. With a raw score of 514, in the context of the database 

parameters on Jan 11, 2015 listed above, The P-value and the E-value (<2e-276) are indistinguishable

/  /
514



The Score

• Raw score, S, comes right out of the alignment 

score computation, using the specific 

substitution matrix

• S can be normalized to S using database 

specific parameters  and K

• It is expressed in bits; S is called the bit-score

ln

ln 2

S K
S

 
 



The Bit Score

This normalized score can be used to compare 

alignments across databases of different 

content, substitution matrices, and database 

sizes

Given 2 bit scores, the respective  E values 

could then be calculated then compared 

meaningfully

2 SE mn




The Message

The significance of a hit is based on

• The Extreme Value Distribution

• The score

– Score depends on the length of the alignment

– Score depends on substitution matrix

– Score depends on how many low complexity matches 
there were

• The size of the query

• The size of the database

• Database specific parameters K and 



Post Processing Details

E-score

For each hit, there is an E-value. It is the expected

number of hits that would occur by random, given 

the query string, the database, and the scoring 

matrix.  This is essentially (almost exactly, below 

.05)  equivalent to the probability that the 

alignment achieved its score by chance.  It is 

calculated by a very sophisticated process (Karlin, 

Altschul, Dembo) using the considerations just 

reviewed.

• Anything larger  than 10-8 is suspicious

• The output is ordered by E-value



Considerations
About E-Values….

Remember!

You cannot compare E-values from different 

runs.  Each run makes its own calculations 

based on the parameters as they exist at the 

time. 

The nr database (for example) is updated 

frequently. 

Turning on/off the low-complexity filter can 

change everything



Considerations
About Bit Scores….

• Bit  scores are normalized

– The normalization takes into account the 

parameters of the database

– So… you can compare bit scores among 

different runs and even among different 

databases (eg nr vis à vis E Coli)



Considerations

GAPS

• In a large sequence, BLAST may find “islands” of 
high similarity.  It may not be able to extend the 
alignment to bridge the void between them.

• As a consequence, each “island” will be 
considered a separate hit.

• It may be more meaningful to consider a longer 
alignment; this might be more consistent with the 
underlying phylogeny

• BLAST can allow gaps for that purpose (user 
parameter)



Considerations

Low Complexity Filters

• DNA, particularly Human DNA, has many regions 

of repeating, non coding sequence.

• Because the sequences are both numerous and 

irrelevant to the biological information sought, the 

inevitably high number of hits can skew the data 

interpretation.

• These regions can be excluded from the 

alignments by using the low-complexity filter.



Considerations
Hashing

Some very clever ideas can be implemented in hashing 
functions. 

For example, if the word width gets larger than 3, the size of a 
flat hash table would grow rapidly.

All we really need to know up front is whether there is a table 
entry. The yes/no could be a pointer (or the absence 
thereof) to a linked list for that table entry.

It is possible to construct a hash table using a hashing 
function based on modulo p where p represents a prime 
number.  In such a scheme the probability of never having 
a failure is greater than 1-1/n .  Space increases only 
nominally with an exponential probability of having  
uncompromised success. A new variant of BLAST, the 
Blast-Like Alignment Tool (BLAT) preprocesses the 
database into a hash table.



The NCBI Makes It Easy

You can follow up on any database alignment 

by clicking on its link. This gives details on 

the structure, function, classification, and 

references.  In addition, the accession 

number, mother database ID, and 

(sometimes) the GID are provided for 

further analysis and classification.



Reading the BLAST Output

• E-value

• Coding length and raw score

• Normalized score in bits adjusted for the DB size 
and the substitution matrix

• The individual alignments

– Identities

– Positives

– The graphical depiction

• At the very bottom of the last page…...



Listing of Significant Alignments

Database IDs



IDs and link to more info

Bit Score Raw Score 

IdentityPositive

E Value

Location of alignment start in target

Location of alignment start in query
Details of One Alignment (Gapped Blast)

Note 9 

gaps in 

query and 

offset of 9 

in target 

position

Mismatch



Following one of 

Many Useful 

Links

GenBank ID



Search Summary

ln
2

ln 2

.267(821) ln .041

.693

320.9

S K
Normalized score base

 









Database

Database parameter name Database parameter value

Posted date Dec 25, 2014 12:36 PM

Number of letters 19,531,459,180

Number of sequences 54,183,042

Entrez query none

Karlin-Altschul statistics

Params Ungapped Gapped

Lambda 0.313667 0.267

K 0.132539 0.041

H 0.408037 0.14

Alpha 0.7916 1.9

Alpha_v 4.96466 42.6028

Sigma 43.6362

With BLOSUM-62



Karlin-Altschul statistics

Params Ungapped Gapped

Lambda 0.337579 0.291

K 0.230331 0.091

H 1.09149 0.41

Alpha 0.325 0.71

Alpha_v 0.633439 6.00297

Sigma 6.71657

With PAM250



The Position Specific Scoring 

Matrix (PSSM) – a concept

1 2 3 4 …….

A .7 .6 .25 .3 …

C .2 .15 .25 .2 …

G .05 .15 .25 .2 …

T .05 .1 .25 .3 …

POSITION IN THE SEQUENCE

E
L

E
M

E
N

T



Position Specific Iterated-BLAST

• Make an alignment with BLAST

• Use the highest scoring alignment as a seed

• Using all other alignments above some 

cutoff, complete the PSSM

• Pass the PSSM against the database  as a 

substitution matrix

• Use the good hits to refine the PSSM

• Iterate until no new sequences are added



Psi-BLAST

• The converged PSSM discovers alignments 

that are further away than BLASTp


