Why Align Strings?

- Find small differences between strings
 Differences ~every 100 characters in DNA
- See if the suffix of one sequence is a prefix of another
 - Useful in shotgun sequencing
- Find common subsequences (*cf* definition)
 - Homology or identity searching
- Find similarities of members of the same family
 - Structure prediction

Alignment

- Not an exact match
- Can be based on edit distance
- Usually based on a similarity measure

Metrics

- A metric $\rho: X \to \Re$ is a function with the following properties for $a,b,c \in \Re$
- $P(a) \in \Re$, $\rho \ge 0$ (real, non-negative)
- $\rho(a,a)=0$ (identity)
- $\rho(a,b) = \rho(b,a)$ reflexive
- $\rho(a,c) \le \rho(a,b) + \rho(b,c)$ (triangle inequality)

Often ρ is called a 'distance'

Edit Distance

The number of changes requires to change one sequence into another is called the *edit distance*.

$$V$$
 I N T N E R S W I N E Y A R D

Edit Distance = 5

Similarity

We are more inclined to use the concept of *similarity*, an alignment scoring function instead. We can then

– deal with gaps

- weight specific substitutions.

Note that similarity is NOT A METRIC.

Example of a Scoring Function for Similarity

Match	+1
	1
Mismatch	-1
(replacement)	
Align with gap	-2
(insertion or deletion)	
Called "Indels" by	
Waterman	

Similarity Scoring of an Alignment Example of Two of 6 Possible Alignments

String (Sequence) Alignment

- Global Alignment
 - Every character in the query (source) string lines up with a character in the target string
 - May require gap (space) insertion to make strings the same length
- Local Alignment
 - An "internal" alignment or embedding of a substring (*sic*) into a target string

Global vs Local

GLOBAL

LOCAL $A \quad T \quad G \quad A \quad T \quad A \quad C \quad C \quad C \quad T$ $T \quad G \quad A \quad A \quad A \quad G \quad G$

Optimal Global Alignments

In the earlier example repeated here, the second alignment is obviously better.

How do we know it is optimal?

In this example there are only 6 possible alignments; in a long string the number can become very large.

The Size of the String Alignment Problem

Consider a string of length n to be aligned with another string that has g gaps $(g \le n/2)$

- With 1 gap there are *n* places to put the gap
- With 2 gaps there are n-1 places to put the second gap
- With g gaps, there are n-g+1 places to put the g^{th} gap or $n(n-1)(n-2) \times \ldots \times (n-g+1)$ possibilities for all gaps

Thus there are precisely n!/(n-g)! or approximately n^{g} possible ways to align..

Dynamic Programming to Find Optimal Sequence Alignment

- In sequence alignment, can piece together optimal <u>prefix</u> alignments to get a *global* solution based on optimizing a scoring function (maximizing in this case).
- Can be applied to a wide variety of alignment problems (Max probability through a Markov Chain→Viterbi Algorithm).

The Basic Optimal Alignment Problem has a Complete Algorithmic Solution Using Dynamic Programming

- Define a scoring function
- Find optimal alignment for prefixes of the query and target strings
 - May need to insert gaps to accomplish this
- Extend the process to larger chunks of the problem
 - Dynamic Programming

A Problem

Consider a network of cities connected by some roads.

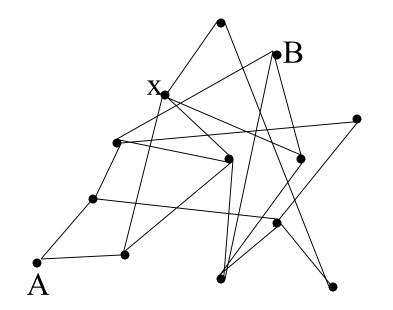
What is the shortest distance from City A to City B? (optimal solution)

The answer will have the minimum cost function (in this case, distance) of all possible routes

Solution

We know that the distance from A to B d(A,B) is equal to the distance from A to some arbitrary city,x, and the distance from x to B

d(A,B)=d(A,x)+d(x,B)



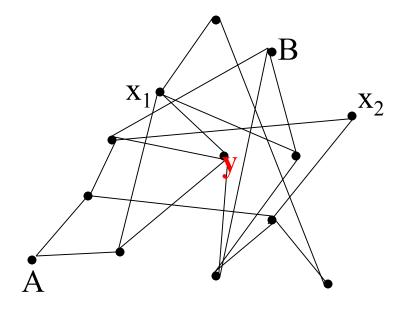
Our problem is that we don't know that the **<u>shortest</u>** path necessarily passes through x

Solution

BUT, we do know that if we look at *every* city, the shortest path will pass through *one* of them.

The problem, then, has the *principle of optimality: wherever we start, decisions* ensuing from the first decision are optimal decisions*

Let's pick that optimal one. Call it y and ask the same question



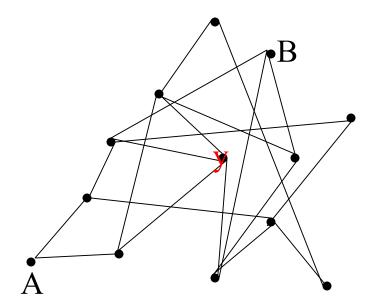
*More abstractly, the decision-making is sometimes called a 'policy'; usually the return from the policy is a scalar

Same Question

What is the shortest distance from A to y, and likewise from y to B.

Same answer: If we look at all the remaining cities, the shortest path will pass through one of them

(likewise for d(y,B))



We have defined a recursive relationship

Same Question

• We can keep asking the same question, and applying the identical answer, till we run out of remaining cities.

- We have glued together optimal solutions to sub-problems by recursively applying the answer to the recurring question.
- This is an exponential exercise

- There is a recurrence relationship between a part and all smaller parts. Here is an algorithm:
- 1. Set starting city as Left endpoint and final city as right endpoint
- 2. GetDist
- Function GetDist
 - Exit when down to the smallest (always plan your getaway !!)
 - Compute all distances between endpoints passing through all trial cities and find mindist city
 - Keep the left endpoint and set the mindist city as a right endpoint
 - Set the mindist city as the left endpoint and keep the right endpoint
 - GetDist

Recursive Algorithms

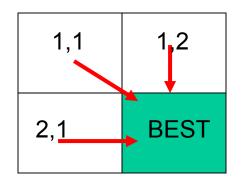
- Again, computations grow <u>exponentially</u> with the number of recursive calls
- But... the number of *distinct* recursive calls grows as a <u>polynomial</u>.
- Recursion is thus a "top-down" inefficient solution to the alignment problem since it is exponentially recalculating previously calculated information, which theoretically could be found in polynomial time

Dynamic Programming One Answer....

- Instead of Top-down, build a "Bottom-up" solution for only the elements corresponding to *distinct* recursive calls
- More conceptually complex, *BUT*.....
 - The global solution runs in time D(n^k) (polynomial time)
 - Works when a problem possesses the principle of optimality.
 - If so, will <u>always</u> give the <u>optimal solution</u> (not a heuristic)

Bottom-Up Computation Matrix Form

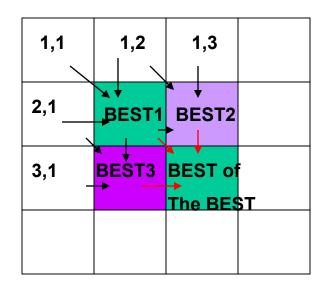
 Start with smallest possible indices (i,j) of the two strings — (1,1) here



• Compute best solution from 3 choices

Bottom-Up Computation Matrix Form

• Increase the size of the problem by incrementing an index and select best of all possible smaller solutions



Best1 = Max[(1,1),(1,2),(2,1)]

Best2 = Max[Best1,(1,2),(1,3)]

Best3 = Max[Best1,(3,1),(2,1)]

Best of the Best = Max[Best1Best2,Best3]

Dynamic Programming

But because we have already analyzed 1,1 1,2 and 2,1 we don't have to do it again; we just need the best solution to put into 2,2 as an element in the next step.

Dynamic Programming

- Bottom-up computation
- Traceback
 - For each increasing size, keep track of *which* of the (3) possible subsolutions was the optimal one

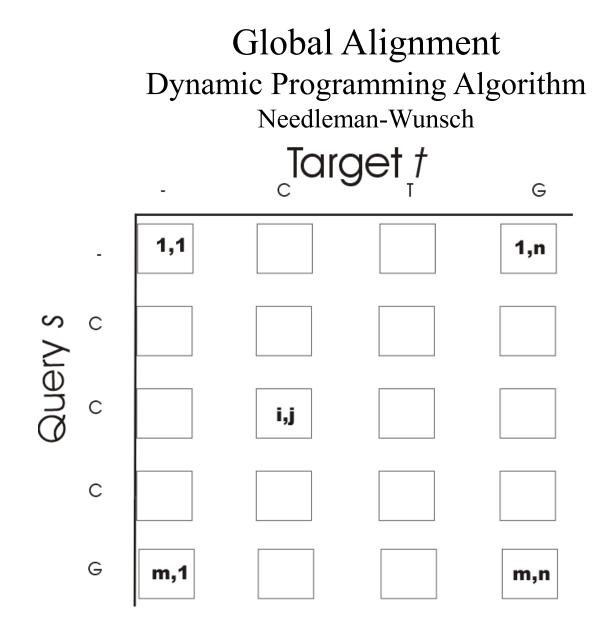
A Popular Scoring Rule for Alignment* on a Matrix

$$A(i, j) = \max \begin{cases} A(i-1, j) & -2 & gap \text{ (deletion)} \\ A(i, j-1) & -2 & gap \text{ (insertion)} \\ A(i-1, j-1) & \pm 1 & + \text{ for match, - for mismatch (replacement)} \end{cases}$$

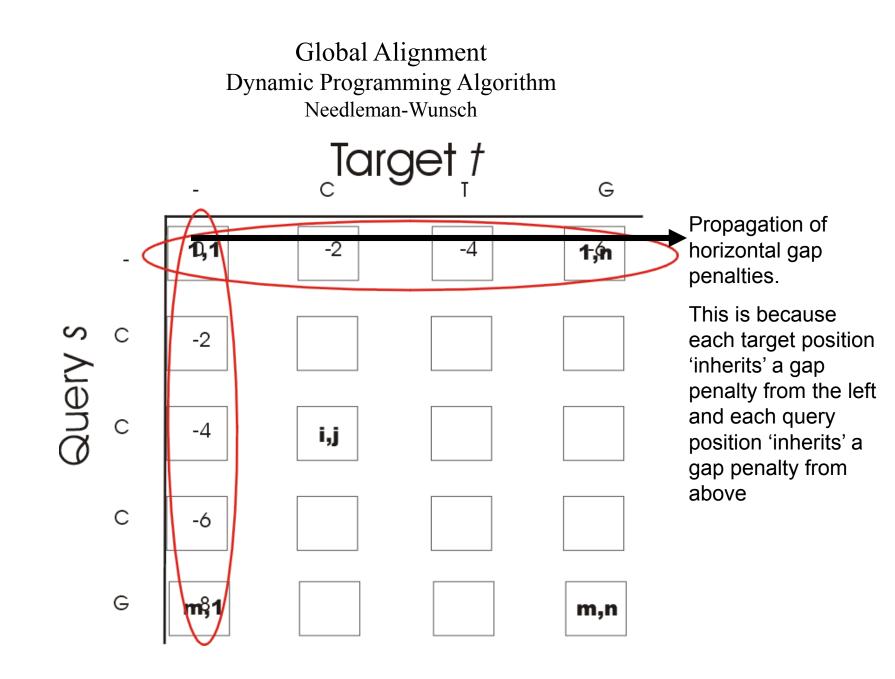
*We will be working with bases (A,C,G,T) in these examples

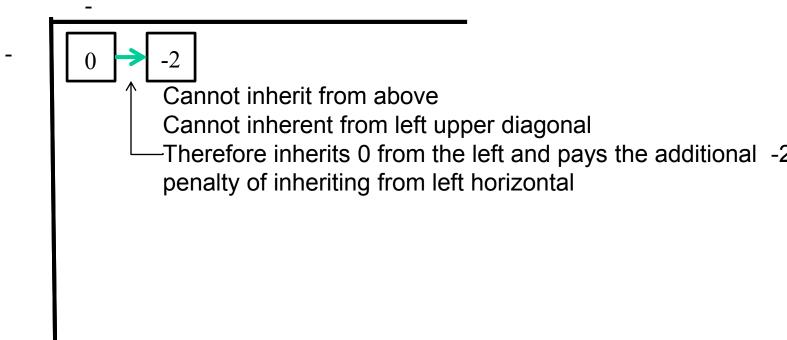
Dynamic Programming

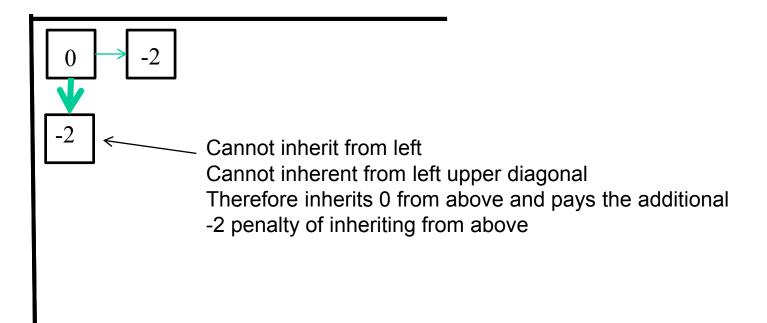
- We are going to look at all possible prefixes in the query (m) against all possible prefixes in the target (n).
- At each step, we will pick out whether we get the best score with an indel, a match, or a replacement, based not on our local score alone, but also in comparison with the cumulative score presented in adjacent cells
- The difficulty of the problem is O(mn)

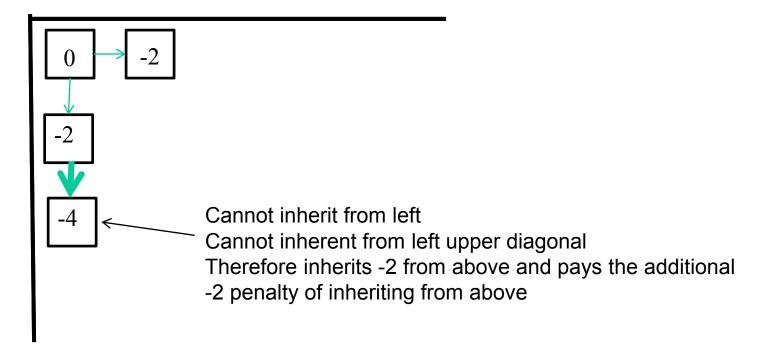


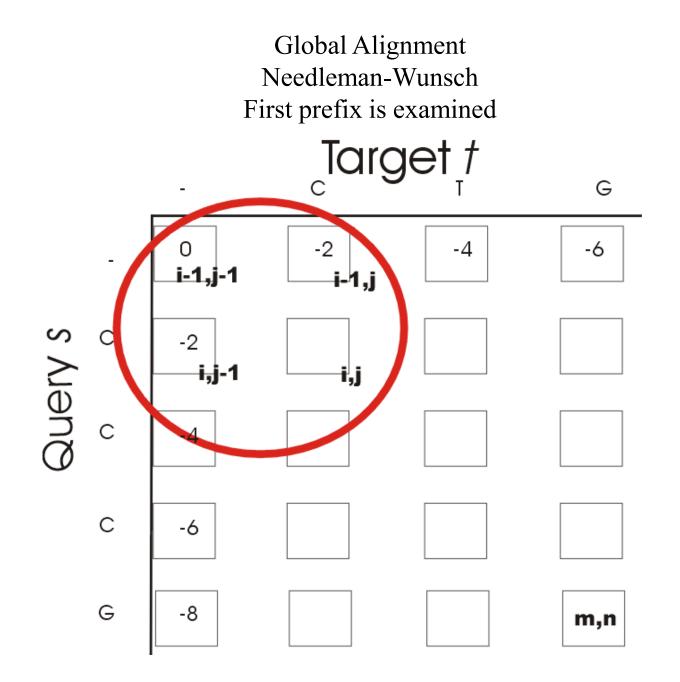
In a global alignment, the idea is to get to the m,n th cell, then trace backward

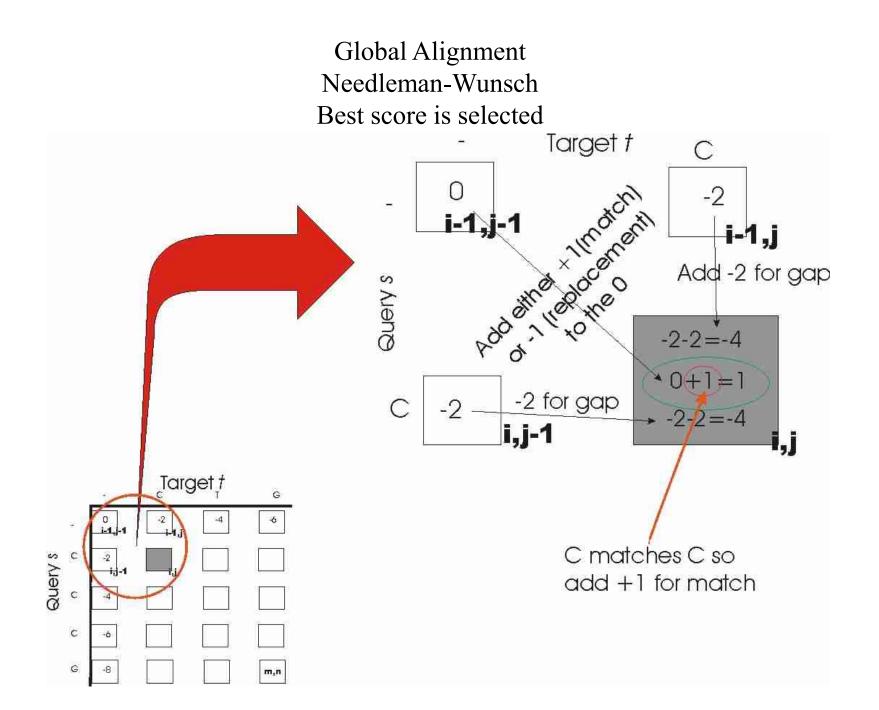






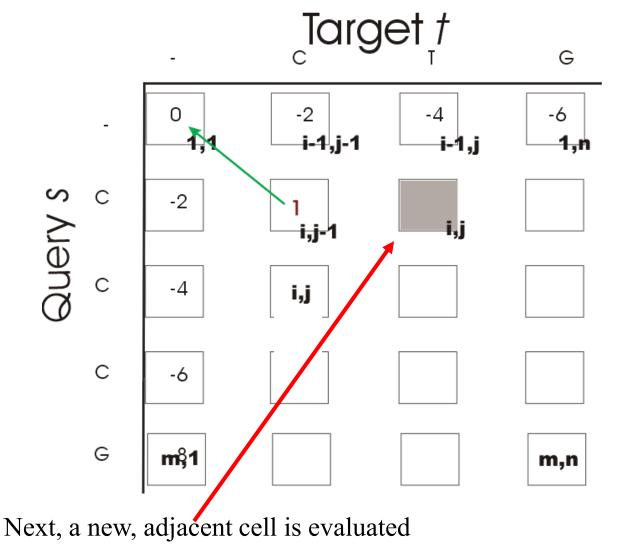




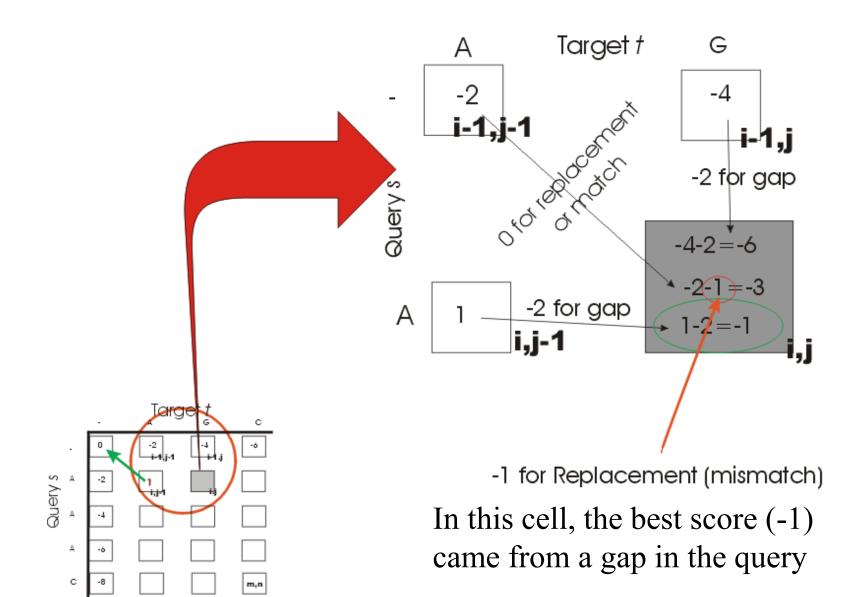


THE TRACEBACK

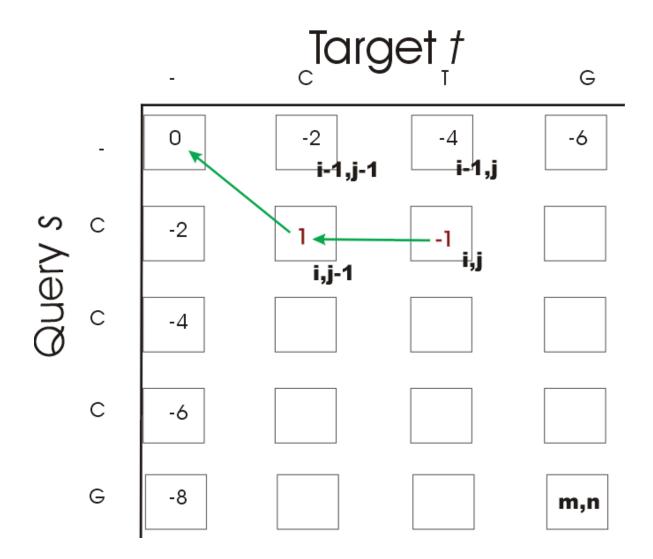
The <u>path(s)</u> by which the optimum prefix was generated is kept, along with the score itself



Global Alignment The next optimum prefix is determined by finding the best score



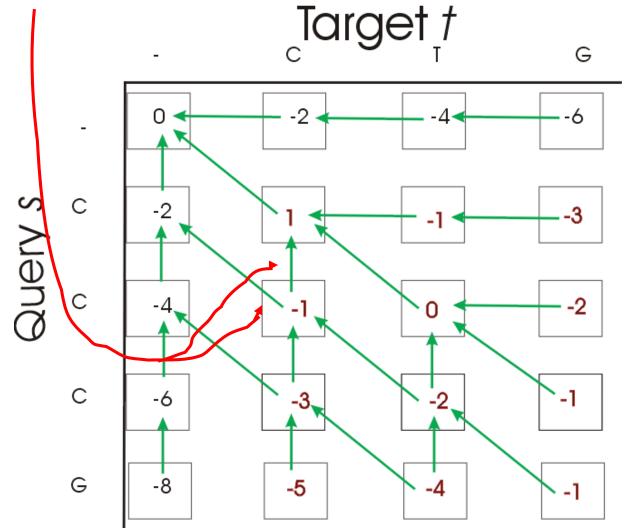
Global Alignment The path and score to that prefix are remembered, as well



Global Alignment

All optimum paths are determined until the m,n th position is reached

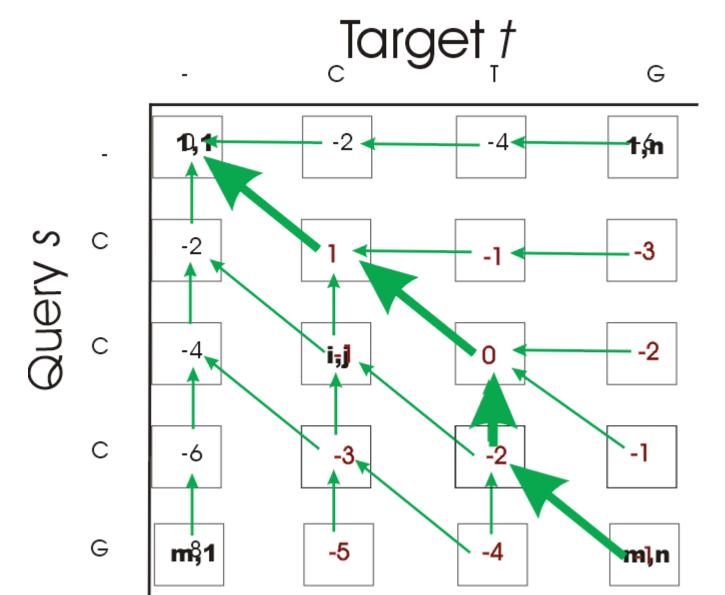
NOTE: If there are two sources of the optimal score in a cell, keep BOTH tracebacks!



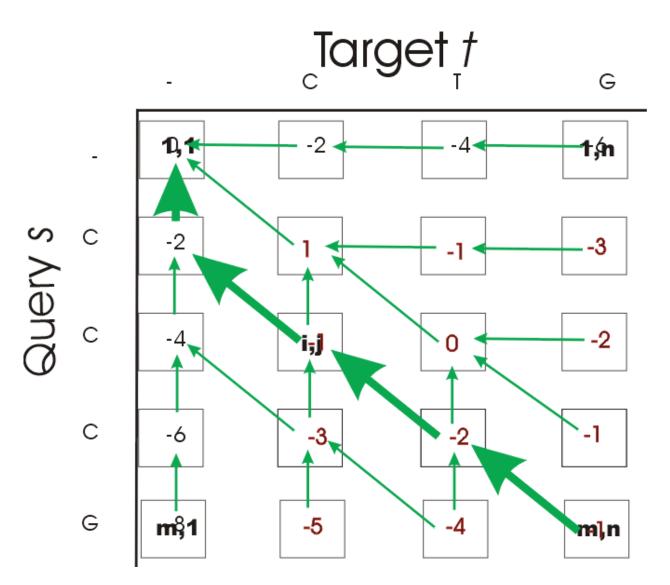
Global Alignment

From the m,n *th* position, the highest scoring continuous path(s) back are determined. This (these) are the optimal alignments.

This score is -1



Global Alignment This score is -1, also

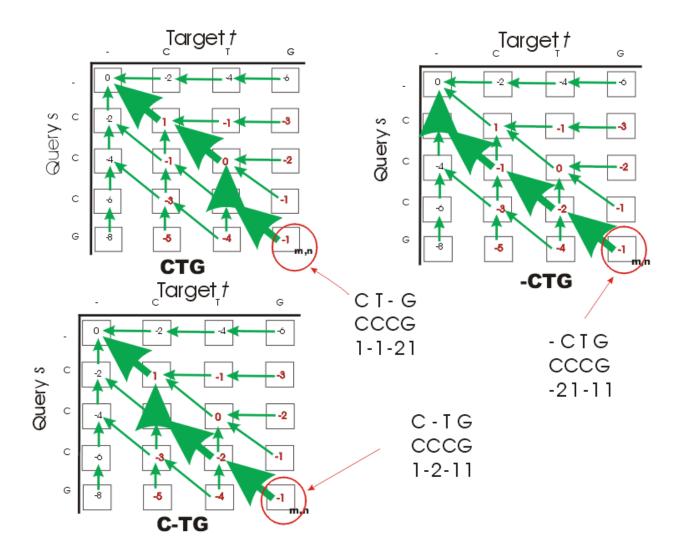


Global Alignment This score is -1, as well $_{\rm c}$ Target $_{\rm T}$ G 1,* 1,'n -2 4 -Query s -2 -3 -1 -2 i,j 0 С -6 -1 0 G m§1 -5 -4 m],n

Global Alignment Constructing the alignment

- Read off the alignment from end to start, beginning with the m,nth cell
 - If leaving a cell diagonally
 - Read off the query and target suffix letters
 - If leaving a cell horizontally
 - Read off the letter in the query
 - A gap in the target
 - If leaving a cell vertically
 - Read off the letter in the target
 - A gap in the query

Global Alignment



Needleman-Wunsch Algorithm

- Runs in polynomial (mn) time
- Runs in mn space as well
 - If made to run in linear space, then finding max score is still easy, BUT finding traceback path(s) is not so easy

LOCAL ALIGNMENT

A *local alignment* is an alignment of the query string with a substring¹ of the target string. It is an optimal <u>suffix</u> alignment.

Smith-Waterman Algorithm

For a <u>local</u> alignment

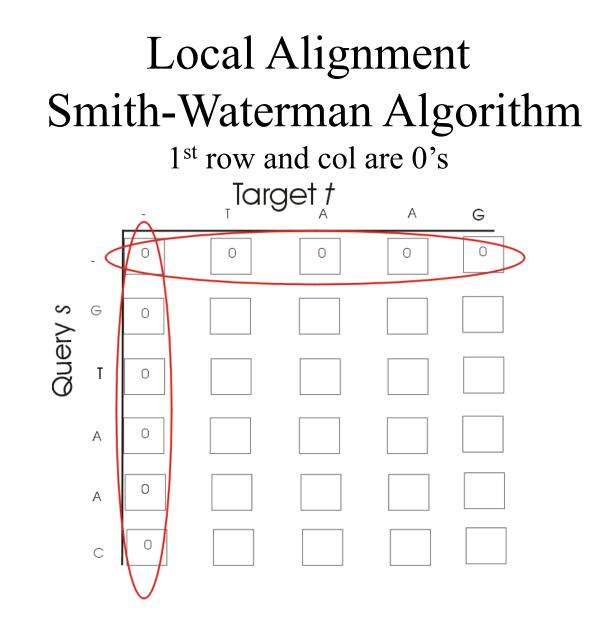
- Finds the highest scoring substrings (suffixes) of the query and target strings
- Waterman: "Fitting one sequence into another"

- Could get a complete solution in O((mn)²)•O(mn)=O((mn)³)
- S-W runs in O(mn)
- Aligns suffixes instead of prefixes

- There are no initial gaps in the best local alignment, so first row and column have 0's propagated from the origin
- Our general algorithm is modified for a 4th case *i.e.* 0

$$A(i, j) = \max \begin{cases} A(i-1, j) & -2 & gap (deletion) \\ A(i, j-1) & -2 & gap (insertion) \\ A(i-1, j-1) & \pm 1 & + for match, - for mismatch (replacement) \\ 0 \end{cases}$$

- We need to keep track of whether a zero arises from a calculation or from the choice of the fourth case. The zero is needed for as a default max score, but using '0' as a place-marker on the grid is confusing. Might consider a different symbol, say, *, as a place-marker on the trace-back grid when scoring rule <u>defaults</u> to 0 as a max score.
- **NOTE!** : But sometimes the calculation itself results in 0. Must use a 'real' 0, not another symbol, in such a case.



Why are the first row and column all zeros?

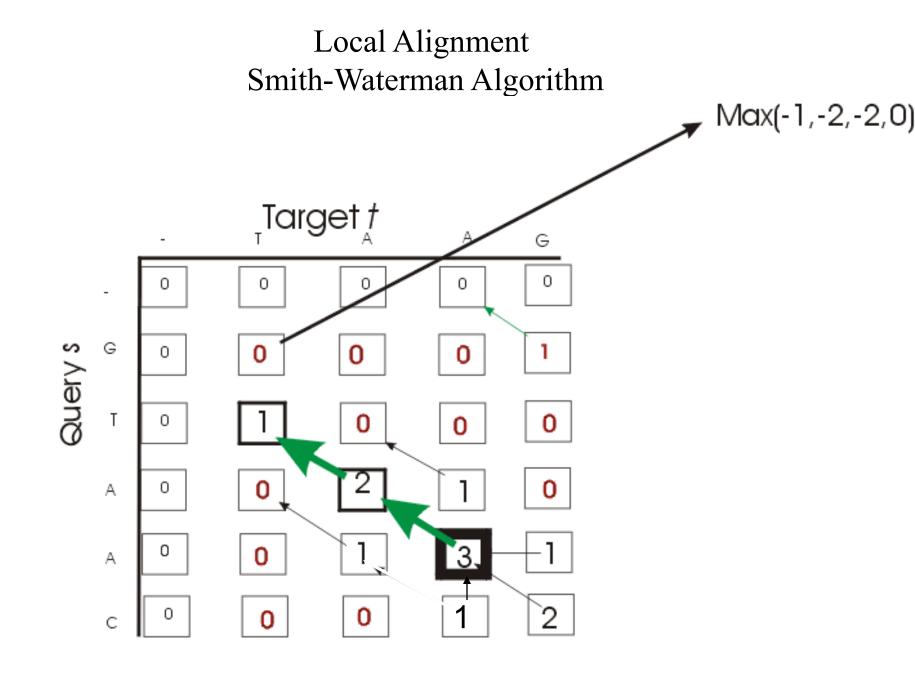
In the Needleman-Wunsch algorithm, they would be increasing negative numbers because of the inheritance penalty.

In the Smith Waterman algorithm, an additional scoring option has been added- a zero (if zero is the maximum score).

So... all negative scores would be replaced by zeros

- Pad first row and col with 0's
- Apply dynamic programming (modified) algorithm
- Distinguish between selected **0** and computed 0
 - Do traceback arrows with all computed values (incl 0)
 - No traceback arrows from selected $\mathbf{0}$
- After matrix is completed, find <u>maximum</u> value
- Trace the path back until there are no arrows out

- The max value is the alignment score
- There are sub and superstrings of different scores
- There may be more than one string with the same max value
- There may be other unrelated strings with lower scores which nevertheless might be important to the problem under study



Highest scoring alignment

 $\begin{bmatrix} T & A & A \\ T & A & A \end{bmatrix} = 3$

Lower scoring superstrings:

$$\begin{array}{cccc} T & A & A & G \\ T & A & A & C \end{array} = 2 \\ T & A & A & G \\ T & A & A & - \end{array} = 1$$

Multiple Sequence Alignment

(MSA)

Based on similarity of the <u>ensemble</u> of sequences, not specific pairs

- Shows patterns
- Discloses families
- Tracks changes (phylogeny)
- Relates mutant genes to wild types or their homologs (Cystic Fibrosis story)

C	G	T	A		C	G	Т	A
G	Т	A		These 4 sequences	_	G	Т	A
A	G	A	-	optimally align as	A	G	_	A
T	G	T	A		T	G	Т	A

MSA Scoring Sum-of-pairs (SP)

- Go ONLY BY <u>COLUMNS</u>
- Take the sum of the scores of all pairs in each column
 - for 4 rows, there would be Score(1st,2nd)+Score(1st,3rd)+Score(1st,4th) +Score(2nd,3rd)+Score(2nd,4th)+Score(3rd,4th)
- In your scoring function, gap-gap is given 0

MSA Scoring Sum of Pairs (SP)

MSA Score is -15

MSA Score is 0

This *scoring part* of the algorithm takes

$$n \cdot \frac{k(k-1)}{2}$$

for a problem with k rows where n is the size of the longest string with no gaps. The complexity is $\mathcal{O}(n^2)$ *i.e.*,running in polynomial time

Now, how will we solve the problem in k dimensions and how hard will it be?

We can certainly apply the dynamic programming algorithm to the k dimensional case.

Dynamic programming

- The problem now generalizes to a hypermatrix of size n+1 and of dimension k.
- Storage space, then, goes up exponentially with k (without the use of a space-saving heuristic such as the one available for the 2 dimensional case)

Generalized Dynamic Programming Algorithm

- The <u>space</u> becomes exponential
 - There are n^k hypermatrix entries
- There are 2^{k-1} possibilities for each entry
- Remember the SP scoring scheme is polynomial k^2
- Thus the algorithm for MSA has complexity $\mathcal{O}(k^2 2^k n^k)$

The Bottom-up DP algorithm has therefore become NP-hard

We need an heuristic!

MSA Heuristic

- 'Star' Alignment (sometimes called mergealignment) is commonly used.
- Like all heuristics, it is <u>fast</u> but does <u>not guarantee</u> the optimal answer
- It is called 'Star' because one of the k sequences is selected to be 'in the center' to be a basis of comparison to the other k-1 sequences. This might be diagrammed as sequences at the ends of spokes radiating from the center sequence.

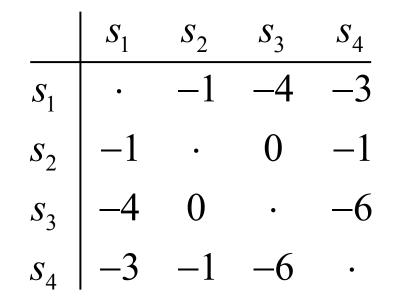
Find the standard alignment scores for each of the (k(k-1)/2) *pairs of sequences* and enter them into a k×k matrix.

Consider this set of sequences k=4, of maxlength n=5 $S_1 \ C \ A \ T \ T \ T$ $S_2 \ A \ T \ T \ T \ A$ $S_3 \ A \ T \ T \ G$ $S_4 \ G \ C \ A \ T \ A$

Here are the n(n-1)/2 pairwise alignment scores

$$\begin{array}{cccc} C & A & T & T & T \\ A & T & T & T & A \end{array} s_{1} \otimes s_{2} = -1 \\ \\ C & A & T & T & T \\ A & T & T & G & - \end{array} s_{1} \otimes s_{3} = -4 & \begin{array}{cccc} A & T & T & T & A \\ A & T & T & G & - \end{array} s_{2} \otimes s_{3} = 0 \\ \\ C & A & T & T & T \\ G & C & A & T & A \end{array} s_{1} \otimes s_{4} = -3 & \begin{array}{cccc} A & T & T & T & A \\ A & T & T & G & - \end{array} s_{2} \otimes s_{3} = 0 \\ \\ \end{array}$$

Now make a symmetric matrix of the pairwise alignment combinations, leaving the diagonal blank



Summing the <u>ROWS</u> of this $k \times k$ matrix, s_2 has the best aggregate comparison score

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	S_4	
<i>S</i> ₁		-1	-4	-3	= -8
<i>S</i> ₂	-1		0	-1	= -8 = -2 = -10 = -10
<i>S</i> ₃	_4	0		-6	=-10
<i>S</i> ₄	-3	-1	-6		=-10

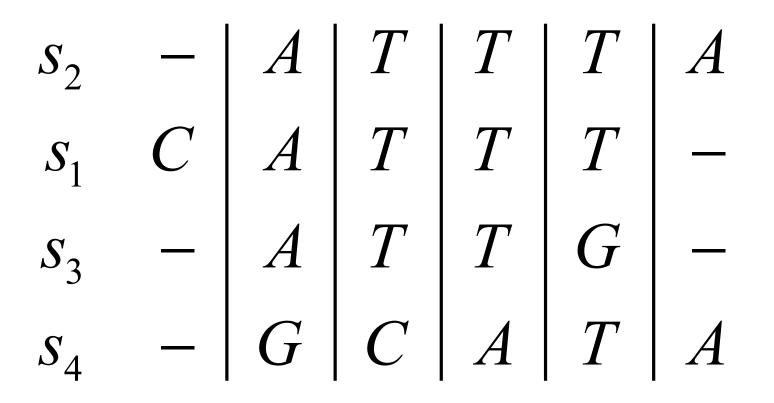
So we pick s_2 to be the center of the star.

- Find the actual best alignments of each sequence with the center-of-the-star. In this case, s_2 is selected.
- Using the center-of-the-star sequence, s_2 , as the query, align it (global) with each of the remaining sequences, yielding n-1 best alignments.

Star Alignment Get the optimal pairwise alignments using s_2 as the query $s_2 A \ T \ T \ T \ A \rightarrow -A \ T \ T \ T \ A$ $s_1 C \ A \ T \ T \ T \ T \ T \rightarrow C \ A \ T \ T \ T \ T \ -$

Final Product of the Star Alignment

Beginning with s₂, merge the optimal alignments, but **KEEP ALL GAPS**



Star Alignment Complexity

- To build the table and get center of star: $\mathcal{O}(k^2n^2)$
- To do the MSA: $O(kn^2+k^2l)$ (1 is length after gaps)
 - $O(kn^2)$ for pairwise alignments
 - $O(k^2l)$ for assembling sequences

Can be optimized to $\mathcal{O}(kn+kl)$