
Why Align Strings?

• Find small differences between strings

– Differences ~every 100 characters in DNA

• See if the suffix of one sequence is a prefix of 
another

– Useful in shotgun sequencing

• Find common subsequences (cf definition)

– Homology or identity searching

• Find similarities of members of the same family

– Structure prediction



Alignment

• Not an exact match

• Can be based on edit distance

• Usually based on a similarity measure



Metrics

A metric ρ:X is a function with the 

following properties for a,b,c

• Ρ(a),  ≥0  (real, non-negative)

• ρ(a,a)=0  (identity)

• ρ(a,b)= ρ(b,a) reflexive

• ρ(a,c) ρ(a,b)+ ρ(b,c) (triangle inequality)

Often ρ is called a ‘distance’



Edit Distance

Edit Distance = 5

V I N T N E R S

W I N E Y A R D

The number of changes requires to change 

one sequence into another is called the 

edit distance. 



Similarity

We are more inclined to use the concept  of 

similarity, an alignment scoring function 

instead. We can then 

– deal with gaps

– weight specific substitutions. 

Note that similarity is NOT A METRIC.



Example  of a Scoring Function

for Similarity

Match +1

Mismatch

(replacement)

-1

Align with gap

(insertion or deletion)

Called “Indels” by 

Waterman

-2 



Similarity Scoring of an Alignment
Example of Two of 6 Possible Alignments

3

1 1 2 1 1 1

1

1 1 1 1 2 1

A T G C A T

C T G C T

A T G C A T

C T G C T

  

   

 

 



String (Sequence) Alignment

• Global Alignment 

– Every character in the query (source) string 

lines up with a character in the target string

– May require gap (space) insertion to make 

strings the same length

• Local Alignment

– An “internal” alignment or embedding of a 

substring (sic) into a target string



Global vs Local

A T G A T A C C C T

T T G T A C G T 
GLOBAL

A T G A T A C C C T

T G A A A G G
LOCAL



Optimal Global Alignments

3

1 1 2 1 1 1

1

1 1 1 1 2 1

A T G C A T

C T G C T

A T G C A T

C T G C T

  

   

 

 

In the earlier example 

repeated here, the second 

alignment is obviously 

better.  

How do we know 

it is optimal?

In this example there are 

only 6 possible 

alignments; in a long 

string the number can 

become very large.



The Size of the String Alignment 

Problem

Consider a string of length n to be aligned with 

another string that has g gaps  (gn/2)

– With 1 gap there are n places to put the gap

– With 2 gaps there are n-1 places to put the second gap

– With g gaps, there are n-g+1 places to put the gth gap or 

n(n-1)(n-2)….(n-g+1) possibilities for all gaps

Thus there are precisely n!/(n-g)! or approximately 

ng possible ways to align..



Dynamic Programming

to Find Optimal  Sequence 

Alignment

• In sequence alignment, can piece together 

optimal prefix alignments to get a global

solution based on optimizing a scoring 

function (maximizing in this case).

• Can be applied to a wide variety of 

alignment problems (Max probability through a 

Markov ChainViterbi Algorithm).



The Basic Optimal Alignment Problem has a 

Complete Algorithmic Solution

Using Dynamic Programming

• Define a scoring function

• Find optimal alignment for prefixes of the 

query and target strings

– May need to insert gaps to accomplish this

• Extend the process to larger chunks of the 

problem 

– Dynamic Programming



A Problem

Consider a network of cities connected by some 

roads. 

What is the shortest distance from City A to City B ? 

(optimal solution)

The answer will have the minimum cost function (in 

this case, distance) of all possible routes



Solution

A

B
x

We know that the distance from A to B  d(A,B) is equal to the distance 

from A to some arbitrary city,x, and the distance from x to B

d(A,B)=d(A,x)+d(x,B)

Our problem is that we don’t know that the shortest path 

necessarily passes through x



Solution
BUT, we do know that if we look at every city, the 

shortest path will pass through one of them.

The problem, then, has the principle of optimality: 

wherever we start, decisions* ensuing from the first 

decision are optimal decisions

Let’s pick that optimal one. Call it y and ask the same 

question

A

B

x1 x2

y

*More abstractly, the decision-making is 

sometimes called a ‘policy’; usually the return 

from the policy is  a scalar



Same Question

A

B

y

What is the shortest distance from A to y, and likewise from y

to B.

Same answer: If we look at all the remaining cities, the 

shortest path will pass through one of them

(likewise for d(y,B))

We have defined a 

recursive relationship



Same Question

• We can keep asking the same question, and 

applying the identical answer, till we run 

out of remaining cities.

• We have glued together optimal solutions to 

sub-problems by recursively applying the 

answer to the recurring question.

• This is an exponential exercise



There is a recurrence relationship between a part and all 
smaller parts. Here is an algorithm:

1. Set starting city as Left endpoint and final city as right endpoint

2. GetDist

Function GetDist

– Exit when down to the smallest  (always plan your getaway!!)

– Compute all distances between endpoints  passing through  all trial 
cities and find mindist city

– Keep the left endpoint and set the mindist city as a right endpoint 

– Set the mindist city as the left  endpoint and keep the right endpoint

– GetDist



Recursive Algorithms
• Again, computations grow exponentially

with the number of recursive calls

• But… the number of distinct recursive 

calls grows as a polynomial.

• Recursion is thus  a “top-down” inefficient 

solution to the alignment problem since it is 

exponentially recalculating previously 

calculated information, which theoretically 

could be found in polynomial time



Dynamic Programming

One Answer….

• Instead of Top-down, build a “Bottom-up” 

solution for only the elements corresponding to 

distinct recursive calls

• More conceptually complex,  BUT………

– The global solution runs in time O(nk) (polynomial 

time)

– Works when a problem possesses the principle of 

optimality.

– If so, will always give the optimal solution (not a 

heuristic)



Bottom-Up Computation 

Matrix Form

• Start with smallest possible indices (i,j) of 

the two strings   (1,1) here

• Compute best solution from 3 choices

BEST

1,1

2,1

1,2



Bottom-Up Computation 

Matrix Form

• Increase the size of the problem by 

incrementing an index and select best of all 

possible  smaller solutions

BEST1 BEST2

BEST3 BEST of

The BEST 

1,1 1,2 1,3

2,1

3,1

Best1 = Max[(1,1),(1,2),(2,1)]

Best2 = Max[Best1,(1,2),(1,3)]

Best3 = Max[Best1,(3,1),(2,1)]

Best of the Best = 

Max[Best1Best2,Best3]



Dynamic Programming

But because we have already analyzed 1,1 1,2 

and 2,1 we don’t have to do it again; we just 

need the best solution to put into 2,2 as an 

element in the next step.



Dynamic Programming

• Bottom-up computation

• Traceback

– For each increasing size, keep track of which of 

the (3) possible subsolutions was the optimal 

one



A Popular Scoring Rule

for Alignment* on a Matrix

( 1, ) 2

( , ) max ( , 1) 2

( 1, 1) 1

A i j gap

A i j A i j gap

A i j

 


  
   

(deletion)

(insertion)

+ for match, - for mismatch (replacement)

*We will be working with bases (A,C,G,T)  in these examples



Dynamic Programming

• We are going to look at all possible prefixes in the 

query (m) against all possible prefixes in the target 

(n).  

• At each step, we will pick out whether we get the 

best score with an indel, a match, or a 

replacement, based not on our local score alone, 

but also in comparison with the cumulative score 

presented in adjacent cells

• The difficulty of the problem is O(mn)



Global Alignment
Dynamic Programming Algorithm

Needleman-Wunsch

In a global alignment, the idea is to get to the m,n th cell, then trace backward



Global Alignment
Dynamic Programming Algorithm

Needleman-Wunsch

Propagation of 

horizontal gap 

penalties. 

This is because 

each target position 

‘inherits’ a gap 

penalty from the left 

and each query 

position ‘inherits’ a 

gap penalty from 

above



-

- 0 -2

Cannot inherit from above

Cannot inherent from left upper diagonal 

Therefore inherits 0 from the left and pays the additional  -2 

penalty of inheriting from left horizontal



0 -2

Cannot inherit from left

Cannot inherent from left upper diagonal 

Therefore inherits 0 from above and pays the additional 

-2 penalty of inheriting from above

-2



0 -2

Cannot inherit from left

Cannot inherent from left upper diagonal 

Therefore inherits -2 from above and pays the additional  

-2 penalty of inheriting from above

-2

-4



Global Alignment

Needleman-Wunsch

First prefix is examined 



Global Alignment

Needleman-Wunsch

Best score is selected



The path(s) by which the optimum prefix was 

generated is kept, along with the score itself

THE TRACEBACK

Next, a new, adjacent cell is evaluated



Global Alignment

The next optimum prefix is determined

by finding the best score

In this cell, the best score (-1) 

came from a gap in the query



Global Alignment

The path and score to that prefix are remembered, as well



Global Alignment

All optimum paths are determined until the m,n th position is reached

NOTE: If there are two sources of the optimal score in a cell, 

keep BOTH tracebacks!



Global Alignment

From the m,n th position, the highest scoring continuous path(s) back are 

determined.  This (these) are the optimal alignments.

This score is -1



Global Alignment

This score is –1, also



Global Alignment

This score is –1, as well



Global Alignment

Constructing the alignment

• Read off the alignment from end to start, 

beginning with the m,nth cell

– If leaving a cell diagonally

• Read off the query and target suffix letters

– If leaving a cell horizontally 

• Read off the letter in the query

• A gap in the target

– If leaving a cell vertically 

• Read off the letter in the target

• A gap in the query



Global Alignment



Needleman-Wunsch Algorithm 

• Runs in polynomial (mn) time

• Runs in mn space as well

– If made to run in linear space, then  finding 

max score is still easy, BUT finding traceback 

path(s)  is not so easy



LOCAL ALIGNMENT



A local alignment is an alignment of 

the query string with a substring1 of 

the target string.  It is an optimal 

suffix alignment.



Smith-Waterman Algorithm

For a local alignment

• Finds the highest scoring substrings 

(suffixes) of the query and target strings

• Waterman: “Fitting one sequence into 

another”



Local Alignment

Smith-Waterman Algorithm

• Could get a complete solution in 

O((mn)2)•O(mn)=O((mn)3)

• S-W runs in O(mn)

• Aligns suffixes instead of prefixes



Local Alignment

Smith-Waterman Algorithm

• There are no initial gaps in the best local 

alignment, so first row and column have 0’s 

propagated from the origin

• Our general algorithm is modified for a 4th

case i.e. 0



( )

( )

, ( )

( 1, ) 2

( , 1) 2
( , ) max

( 1, 1) 1

0

deletion

insertion

for match for mismatch replacement

A i j gap

A i j gap
A i j

A i j  

 


 
 

  


Local Alignment

Smith-Waterman Algorithm



Local Alignment

Smith-Waterman Algorithm

• We need to keep track of whether a zero arises 

from a calculation or from the choice of the fourth 

case.  The zero is needed for as  a default max 

score,  but using ‘0’ as a place-marker on the grid 

is confusing.  Might consider a different symbol, 

say, *, as a place-marker on the trace-back grid 

when scoring rule defaults to 0 as a max score.

• NOTE! : But sometimes the calculation itself 

results in 0.  Must use a ‘real’  0, not another 

symbol, in such a case.



Local Alignment

Smith-Waterman Algorithm
1st row and col are 0’s



Why are the first row and column all zeros?

In the Needleman-Wunsch algorithm, they would be increasing 

negative numbers because of the inheritance penalty.

In the Smith Waterman algorithm, an additional scoring option 

has been added- a zero (if zero is the maximum score).

So… all negative scores would be replaced by zeros



Local Alignment

Smith-Waterman Algorithm

Recipe

• Pad first row and col with 0’s

• Apply dynamic programming (modified) 

algorithm

• Distinguish between selected 0 and computed 0

– Do traceback arrows with all computed values (incl 0)

– No traceback arrows from selected 0

• After matrix is completed, find maximum value

• Trace the path back until there are no arrows out



Local Alignment

Smith-Waterman Algorithm

Nuances

• The max value is the alignment score

• There are sub and superstrings of different 
scores

• There may be more than one string with the 
same max value

• There may be other unrelated strings with 
lower scores which nevertheless might be 
important to the problem under study



Local Alignment

Smith-Waterman Algorithm

1



Local Alignment

Smith-Waterman Algorithm

Results

3

Highest scoring alignment

T A A

T A A






:

2

1

Lower scoring superstrings

T A A G

T A A C

T A A G

T A A













Multiple Sequence Alignment

(MSA)



MSA

Based on similarity of the ensemble of 

sequences, not specific pairs

• Shows patterns

• Discloses families

• Tracks changes (phylogeny)

• Relates mutant genes to wild types or their 

homologs (Cystic Fibrosis story)



MSA

C G T A

G T A

A G A

T G T A

These 4 sequences 

optimally align as

C G T A

G T A

A G A

T G T A







MSA Scoring

Sum-of-pairs (SP) 

• Go ONLY BY COLUMNS

• Take the sum of the scores of all pairs in each 

column

– for 4 rows, there would be 

Score(1st,2nd)+Score(1st,3rd)+Score(1st,4th)

+Score(2nd,3rd)+Score(2nd,4th)+Score(3rd,4th)

• In your scoring function, gap-gap is given 0



MSA Scoring

Sum of Pairs (SP)

0 2 76 6 3 69

G T A G T A

T A G

C C

G

A A

T A

G A G A

G T A G T AT T



 





 

MSA Score is -15 MSA Score is 0



MSA
This scoring part of the algorithm takes

for a problem with k rows where n is the size 

of the longest string with no gaps.  The 
complexity is O(n2) i.e.,running in polynomial time

( 1)

2

k k
n






MSA

Now, how will we solve the problem in k 

dimensions and how hard will it be?

We can certainly apply the dynamic programming 

algorithm to the k dimensional case.



MSA

Dynamic programming

• The problem now generalizes to a 

hypermatrix of size n+1 and of dimension k.

• Storage space, then, goes up exponentially 

with k (without the use of a space-saving heuristic such  

as the one available for the 2 dimensional case)



MSA
Generalized Dynamic Programming 

Algorithm

• The space becomes exponential

– There are  nk hypermatrix entries

• There are 2k-1 possibilities for each entry

• Remember the SP scoring scheme is polynomial 
k2

• Thus the algorithm for MSA has complexity

O(k22knk)

The Bottom-up DP algorithm has 
therefore become NP-hard



MSA

We need an heuristic!



MSA Heuristic

• ‘Star’ Alignment  (sometimes called merge-

alignment) is commonly used.

• Like all heuristics, it is fast but does not guarantee

the optimal answer

• It is called ‘Star’ because one of the k sequences is 

selected to be ‘in the center’ to be a basis of 

comparison to the other k-1 sequences. This might 

be diagrammed as sequences at the ends of spokes 

radiating from the center sequence.



Star Alignment

Find the standard alignment scores for each of 

the  (k(k-1)/2) pairs of sequences and enter 

them into a kk matrix.

Consider this set of sequences k=4, of 

maxlength n=5

1

2

3

4

C A T T T

A T T T A

A T T G

G

s

s

s

s C A T A



Star Alignment

1 2

1 3 2 3

1 4 2 4 3 4

1

4 0

3 1 6

C A T T T
s s

A T T T A

C A T T T A T T T A
s s s s

A T T G A T T G

C A T T T A T T T A A T T G
s s s s s s

G C A T A G C A T A G C A T A


  



 
     

  

  
          

  

Here are the n(n-1)/2  pairwise alignment 

scores



Star Alignment
Now make a symmetric matrix of the pairwise alignment 

combinations, leaving the diagonal blank

1 2 3 4

1

2

3

4

1 4 3

1 0 1

4 0 6

3 1 6

s s s s

s

s

s

s

   

  

  

   



Star Alignment

1 2 3 4

1

2

3

4

1 4 3 8

1 0 1 2

4 0 6 10

3 1 6 10

s s s s

s

s

s

s

    

   

   

    

Summing the ROWS of this kk matrix, s2

has the best aggregate comparison score

So we pick s2 to be the center of the star.



Star Alignment

• Find the actual best alignments of each sequence with the 

center-of-the-star. In this case, s2 is selected.

• Using the center-of-the-star sequence, s2 , as the query, 

align it (global) with each of the remaining sequences, 

yielding n-1 best alignments.



Star  Alignment
Get the optimal pairwise alignments using s2 as the query

A

2

1

2

3

2

4

A T T T A A T T T A

C A T T T C A T T T

A T T T A A T T T A

A T T G A T T G

A T T T A A T T T A

G C

s

A T A G C A T A

s

s

s

s

s







 





Final Product of the Star  Alignment

Beginning with s2, merge the optimal alignments, but 

KEEP ALL GAPS

2

1

3

4

s A T T T A

s C A T T T

s A T T G

s G C A T A





 





Star Alignment

Complexity

• To build the table and get center of star: 

O(k2n2)

• To do the MSA: O(kn2+k2l) (l is length after gaps)

– O(kn2)for pairwise alignments

– O(k2l) for assembling sequences

Can be optimized to O(kn+kl) 


