Title of Project: Please Capitalize the First Letter of Each Word in Your Title
Insert your first and last name, Insert other author's first and last name, Insert other author's first and last name, Insert other author's first and last name, Insert MENTOR'S first and last name
University of Connecticut School of Medicine, UConn Health, Farmington, CT
1Insert department and/or institution of other authors (if applicable)
2Insert department and/or institution of other authors (if applicable)

Body of Abstract MAXIMUM of 350 words

Supported by: (e.g., The UConn School of Medicine Summer Research Fellowship)

References:
Please format the references by numbering each one (e.g., 1. Smith, John....). Do not add any extra lines/tabs within or between each reference.

In the body of the abstract include four headings corresponding to each rubric criterion: Background/Objectives, Methods, Results, and Conclusions. Each heading should be in Bold, followed by a colon.

Do NOT exceed one full page in Microsoft Word!
Sample Abstract

Unobtrusive Gait Velocity Measurement in a Geriatrics Outpatient Clinic

Laura Hatchman¹, Zhaoyan Fan¹, Robert X Gao¹, George A Kuchel¹, Lisa C. Barry¹
¹University of Connecticut School of Medicine, UConn Health, Farmington, CT

Background/Objectives: Gait velocity is a simple, robust predictor of health outcomes in older persons. Yet clinicians rarely measure this “5th vital sign.” Its routine, objective, and unobtrusive measurement in “real-world” clinical settings is needed to translate this research into everyday practice. We sought to establish the validity and feasibility of using a radio frequency identification device (RFID) for measuring gait velocity in geriatrics clinic patients.

Methods: Geriatrics clinic patients were recruited over 4 weeks. Participants (N=50) wore an armband containing a RFID tag with a unique ID and were instructed to walk down the clinic hallway at their usual pace. Wall-installed RFID readers recorded time to walk 4.3-meters. Participants’ walks were simultaneously timed via a stopwatch, the “gold standard.” Two gait velocity measurements, based on RFID and stopwatch recordings, were calculated for each participant and difference scores (RFID gait velocity – stopwatch gait velocity) were plotted. T-tests determined if difference scores varied according to patient characteristics. Participants and 9 clinic staff were also asked questions regarding acceptability of using the device.

Results: Mean age was 80.9±8.0 (62-99) and 66% were female. Average gait velocity (m/s) via RFID was 0.849±0.268 (0.132 to 1.471) and via stopwatch was 0.852±0.269 (0.126 to 1.466). Average difference score was -0.003±0.035. Participants who reported difficulty walking a quarter mile(42%), used an assistive device(24%) or reported fair/poor health(18%) had higher (worse) gait velocity using either RFID or stopwatch (p<0.01 for each comparison). However, these characteristics did not impact difference in gait velocity. Overall, 50(100%) and 46(92%) participants agreed/strongly agreed that they felt comfortable having their gait velocity measured and that they wanted their providers to track this over time. Also, 8 of 9 providers indicated that measuring gait velocity did not interrupt office procedures.

Conclusions: Measuring gait velocity using RFID technology is unobtrusive and provides measurements comparable to the research “gold standard.” Integrating gait velocity measurement into “real-world” clinical settings may help to support T2 translation and the Precision Medicine effort.

Supported by: The UConn School of Medicine Summer Research Fellowship

References: