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(a) Network portrait. The goal is to drive the network to a desired state by perturbing nodes in a control set. (b) State space portrait. In the absence of control,
the network at an initial state xo evolves to an undesirable equilibrium x, in the n-dimensional state space (red curve). By perturbing the initial state (orange
arrow), the network reaches a new state that evolves to the desired target state x* (blue curve). (c) Constraints. In general, there will be constraints on the
types of compensatory perturbations that one can make. (d, e) Iterative construction of compensatory perturbations.
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Part I1: Let’s solve the problem together!
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ABSTRACT

Targeted therapies interfering with specifically one protein activity
are promising strategies in the treatment of diseases like cancer.
However, accumulated empirical experience has shown that
targeting multiple proteins in signaling networks involved in the
disease is often necessary. Thus, one important problem in
biomedical research is the design and prioritization of optimal
combinations of interventions to repress a pathological behavior,
while minimizing side-effects. OCSANA (optimal combinations of
interventions from network analysis) is a new software designed
to identify and prioritize optimal and minimal combinations of inter-
ventions to disrupt the paths between source nodes and target
nodes. When specified by the user, OCSANA seeks to additionally
minimize the side effects that a combination of interventions can
cause on specified off-target nodes. With the crucial ability to
cope with very large networks, OCSANA includes an exact solu-
tion and a novel selective enumeration approach for the combina-
torial interventions’ problem.

Availability: The latest version of OCSANA, implemented as a plugin
for Cytoscape and distributed under LGPL license, is available
together with source code at http://bioinfo.curie.fr/projects/ocsana.

implies that intervening molecules that play a central role in
the cell may cause side effects, requiring alternative points of
intervention (Samaga et al., 2010). Some methods have been
proposed to address some aspects of this problem (Hadicke
and Klamt, 2011; Haus er al., 2008; Klamt er al., 2006).
However, limited scalability of the methods and the lack of
a prioritization criterion are hindering factors for their applic-
ability to large biological networks. We introduce OCSANA, a
software for the identification and prioritization of optimal
minimal combinations of interventions (CIs). We define a CI
as a set of nodes such that each elementary path (a path from
source to target node) contains at least one node from this set.
This CI set indicates the nodes to be intervened to disrupt all
the identified elementary paths. The interventions can be knock
outs (deletion of genes/proteins) and knock ins (overexpres-
sions of genes/proteins). A CI is minimal if no proper subset
of the CI is a CI itself, and its optimality is defined in terms of
a heuristic scoring (see Section 2). To ensure the method’s
scalability, OCSANA includes an Exacr SoLutioN via an
adaptation of Berge’s algorithm (Berge, 1989) and a novel
SeLecTiIVE ENUMERATION approach based on a weighted-
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Although some in silico strategies have been proposed [%34] scalability and
prioritization of the Cls remain as important limitations to their full applicability.

OCSANA has been designed as a systemic method designed to identify and rank
optimal combinations of interventions (Cls) that intervene, the elementary path
between specified source and targets nodes to obtain a desired behavior in the
network while minimizing side-effects on pre-specified non-target paths for large size
signal transduction networks.

[1] Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Sorger P. (2006) A methodology for the structural and functional analysis of signaling and regulatory
networks. BMC Bioinformatics, 7(56).

[2] Haus UU, Klamt S, Stephen T (2008) Computing knock-out strategies in metabolic networks, J. Comput Biol, 15, 259-268.

[8]Samaga, R., Von Kamp, A., Klamt S. (2010) Computing Combinatorial Intervention Strategies and Failure Modes in Signaling Networks. Journal of
Computational Biology, 17(1): 39-53.

[4]Yan, H., Zhang, B., Li, S., Zhao, Q. (2010) A formal model for analyzing drug combination effects and its application in TNF-alpha-induced
NFkappaB pathway. BMC Syst Biol, 4:50
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Given a collection of sets ¢, to find minimal hitting sets ““H;” is a classical problem in e

Combinatorics called “The Minimal Hitting Set Problem”. This is an NP-Complete problem

a0 NG Minimal Transversal
—— Minimal Hitting Set Problem — " for Hypergraphs

Boolean Dualization

Maximal Elements



Minimal Hitting Set Problem
Problem 1: Finding Minimal Hitting Sets

Several known algorithms:

= Sequential Method [Berge 1989]

~ FK-Algorithm [Fredman, Khachiyan 1996]

~ DL-Algorithm [Dong, Li 1999]

= KS-Algorithm Kavvadias, Stravropoulos 199]

~ Multiplication Method [Takata 2002]

~ BMR-Algorithm [Bailey, Ramamohanarao 2003]

_ Partial Enumerative Solutions [Vera-Licona,2013; Klamt, 2014]
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~ FK-Algorithm [Fredman, Khachiyan 1996]

~ DL-Algorithm [Dong, Li 1999]

~ KS-Algorithm Kavvadias, Stravropoulos 199]
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Problem 2: How to choose from the identified MIs?
Which one(s) is better and why?

We score MHSs by first, scoring each one of its nodes.

The scoring is based on:

(i) The lengths of the paths from the node of interest to the targets,

(i) The type of effect on target nodes (e.g. activation/inhibition effect),
(iii) Side effects with respect to off-target nodes,

(iv) The number of elementary paths in which the node participates and

(v) The number of targets that such node can reach simultaneously.
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Problem 2: How to choose from the identified MIs? Which one(s) is better and why?

We introduce a score for nodes according to the effect on the target node Ol.
Let’s suppose that we have m source paths sinking in O1.

1
.2 — ' h ) is the si f th
(2] so1(n) izzl;ma(z)length ol path i’ where o (7) is the sign of the
(—0) it" path starting from node n
1
301(0)—(4-)1:1
so1(B) = (+)% — 05
1

so1(E) 1: (—l—)§ 1: 0.5

so1({1) = (+)§ + (—)§ =0

so1(12) = (+)= = 0.33



Problem 2: How to choose from the identified MIs? Which one(s) is better and why?

(J— /1 Additionally, we introduce a penalty score for the source nodes, according to

EL their effect on all unwanted target nodes:

Poz(C) =
1 « B) =
Po7(n) = . Z sy, (x), where U, is the set of unwanted targeted Poa(B)
i=1 q

nodes and r = |U;| path starting from node n

Thus the total score of each one of the source nodes x to O/ are scored as So:(z) = sy, (z) — ppy()

So1(C)=1-0=1
So1(B)=1/2—-0=0.5
So1(E)=1/2—1/3 = .166
So1(I1) =0—(—)1/4= .25
So1(12) =1/3 —1/4 = 0.083



Problem 2: How to choose from the identified MIs? Which one(s) is better and why?

Optimal minimal intervention sets according to their score is:

Optimal Cut Sets for Ol OCS(O1)

| Sol({C}) =1

So1({I2, B}) =0.083 + 0.5 = 0.583
2 So1({I1,E}) = .25 + .166 = 0.316
So1({I1,12}) = .25 +0.083 = 0.333

e

j

a/;
5

(2]

a

0
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Problem 3: Scalability of the Method

Several known algorithms:

/Exact Solution
~ Sequential Method [Berge 1989]

~ FK-Algorithm [Fredman, Khachiyan 1996]

~ DL-Algorithm [Dong, Li 1999]

~ KS-Algorithm Kavvadias, Stravropoulos 199]
Multiplication Method [Takata 2002]

~ BMR-Algorithm [Bailey, Ramamohanarao 2003]
~ Partial Enumerative Solutions [Vera-Licona,2013]

(

Selective Enumeration
(Greedy Algorithm)
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Outline of Algorithm to Compute Minimal Combinations of
Interventions

Input/mandatory: A network (signed digraph), a set of source nodes, target nodes and a set of

parameters.
Input/optional: A set of complementary nodes assigned as off-target nodes (i.e. side effects).

Output: Prioritized list of optimal Cls.

|. Pre-processing step: Compute the collection of elementary paths, that is, paths from source nodes to
target nodes according to the selected parameters for the path analysis.

2. Score the nodes present in the elementary paths and sort them in a descending order.

3. Compute the so-called minimal hitting sets (MHSs) for the elementary paths according to the selected
algorithm approach and sort them according to OCSANA’s score.

This sorted list ofMHSs is the sought list of prioritized optimal Cls.



Outline of Algorithm to Compute Minimal Combinations of

Interventions

v Path Analysis Selected
Optimal & - . Graphs on the % of Cls Up to Size 5
Shortest Paths Suboptimal AN Nea s:s;—tl'r‘\;ersectmg identified by Selective Enumeration/
Shortest Paths Optimal Solutions
v (A1) EGFR Network (144 Nodes, 266 Edges)
(A2) [No. Elementary Paths, No. Elementary Nodes] [125, 49] [234, 55] [11050, 63]
(A3) Time to find all Cls up to Size 5 by Exact Sol. <ls. <ls. <ls.
(Berge’s alg.) N/A (The search space is too small
(A4) Time to find all Cls up to Size 5 <ls. <ls. <ls. . . .
by Full Enumeration/Exhaustive Search toirequire selective enumeration)
(A5) Time to find all of Cls up to Size 5 by Selective <ls. <lIs. <ls.
Enumeration/Optimal Sols.
v (B1) ErbB Family Breast Cancer Network (336 Nodes, 492 Edges)
(B2) [No. Elementary Paths, No. Elementary Nodes] [158, 77] [473, 103] [23668, 160]
(All paths up to length 20) ;
(B3) Time to find all Cls up to Size 5 by Exact Sol. 78s. 66 s. 965 s. 2
(Berge’s alg.) b
(B4) Time to find all Cls up to Size 5 6s. 25s. 3401 s. 5;
by Full Enumeration/Exhaustive Search 90
(B5) [Time to find all of Cls up to Size 5 by Selective [<Is.,9.47%] [<I s., 2.29%] [ 380s., 11.19%]
Enumeration /Optimal Sols., % of search space needed]
v (C1) HER2+ Breast Cancer Network (2753 Nodes, 3812 Edges)
(€2) [No. Elementary Paths, No. Elementary Nodes] [534, 121] [2538, 170] [69805, 317]
(All paths up to length 20)
(C3) Time to find all Cls up to Size 5 by Exact Sol. 741 s. 133 s. 696 s. ;
(Berge’s alg.) a
(C9) Time to find all Cls up to Size 5 59s. 753 s. N/A (> 43000 s.) é‘
by Full Enumeration/Exhaustive Search i 4
(C5) [Time to find all of Cls up to Size 5 by Selective  [<I s, 1.07%] [l s., 0.57%] [72 s., 0.76%]
Enumeration /Optimal Sols., % of search space needed]
(C6) Time to find all Cis up to Size 5 by Exact Sol. 36610 s. 9965 s. N/A (> 43000 s.)
(Berge’s alg.) Max_Nb Parameter
<7 Time to find all Cls up to Size 5 1274 s. 21786 s. N/A (> 43000 s.)
by Full Enumeration/Exhaustive Search tof denifed Cl for Shortest Path Ancie
=% of Identified Cls for Shortest Pat alysis
(C8) [Time to find all of Cls up to Size 6 by Selective [484 s., 36.40%] [1633 s., 7.36%] N/A (> 43000 s.) = & Shidanifiad Clfor z;g:;{mfszgg&vggg' ::;hlyggﬂ'vﬂs

Enumeration /Optimal Sols., % of search space needed]

95 s. to compute 40% of Cls
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+ HER2 (also known as ErbB2 or Her2/neu) stands for
Human Epidermal Growth Factor Receptor 2.

+ Each normal breast cell contains copies of the HER2 gene
which encodes the HER?2 protein (also called HER2 receptor).

+ HER2 is a member of the HER receptor tyrosine kinase
family, which includes three other members: Epidermal growth
factor receptor (EGFR or HER1), HER3 and HER4.

+ HER2, the preferred heterodimerization partner of the other
HER receptors, does not have a ligand and is activated by
+ overexpression and homodimerization, or

+ ligand-mediated stimulation of another HER
receptor by heterodimerization.

Genentech BioOncology
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+ In HER2+ breast cancer, the cancer cells have an abnormally high number of HER2 genes per cell thus a higher number of
HER?2 protein on the surface of these cancer cells. This is called HER2 protein over-expression (HER2+).

+ Approximately 20% of breast cancer patients have tumors that are HER2+ . This abnormality in HER2 production can occur in
many other types of cancer.



Approved Targeted-Therapies for Her2+ Breast Cancer

Pertuzumab

/
Trastuzumab EGER HER2 4&
o /[
HER2 18208 |
SOREO0000000 o HER2 CP-751871
oo R X /
HEFHD ' : 00 v
) 4988088000y » lGF'R
,0 W ‘..00' 590 4 ' , _,.\.

Hm?’}Q Wrezs %(\1 ¥ 7 i 4
\ Lapa'%ﬂlb L/ -

X o

p £ @ |

Trastuzumab

~ =
m
u.s)
n
o... ¥ —‘ ’
o
0..
Ry 7 O
Q
4
8
% ¥
6’ <
.
g g
g

CI-779 5

7% HERZ
( ) oy
5 R
- e
A S
8= =Y ST
58 o R
& \" =

nature

aue: ONCOLOGY

+ These targeted therapies have shown significant clinical benefit

+ However, a large percentage of patients with advanced HER2+ BC eventually relapse after treatment
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suggesting that tumors acquire or intrinsically possess mechanisms for escape from HER?2 inhibition
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The pipeline of network analysis consists of 4 main steps:

4. Construction of combinations of interventions with
OCSANA and identification of optimal therapeutic
interventions.

3. Identification of a Core Signal Transduction Network
of Dysregulated Pathways in HER2+ BC. Assembling of a
comprehensive network for the set of functionally enriched
genes, their transcription factor and master regulators.

)

2. Identification of transcription factors and master
regulators responsible for the expression patterns observed
in the functionally enriched gene set identified on step 1.

t

1. Protein-protein interaction (PPI) network analysis for
the identification of Functionally Enriched Gene Set in
HER2+ BC.
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The pipeline of network analysis consists of 4 main steps:
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OCSANA and identification of optimal therapeutic
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3. Identification of a Core Signal Transduction Network
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’ Example: Combinations of Targeted Therapies L!EH.Q“\I
institut in Breast Cancer
The pipeline of network analysis consists of 4 main steps: 'de”:;itfggf:f," of ocsana

Combinations of
Interventions from
Network Analysis

=
1)

4. Construction of combinations of interventions with
OCSANA and identification of optimal therapeutic

interventions. e - .
Vera-Licona et al. OCSANA: optimal
combinations of interventions from

vosage 3 network analysis. Bioinformatics, 2013.
apping on
canonical pathways
3. Identification of a Core Signal Transduction Network *

Identification of

of Dysregulated Pathways in HER2+ BC. Assembling of a Master Regulators
comprehensive network for the set of functionally enriched
genes, their transcription factor and master regulators.

)

2. Identification of transcription factors and master

regulators responsible for the expression patterns observed Stage 2
ISt O

in the functionally enriched gene set identified on step 1. overrepresented

1. Protein-protein interaction (PPI) network analysis for
the identification of Functionally Enriched Gene Set in
HER2+ BC.

Stage |
Functionally
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Family of HER receptors and associated activating ligands.

Tyrosine
kinase
domain

Fralick M, Hilton JF, Bouganim N, Clemons M, Amir E. Dual Blockade of HER2 — Twice as Good or
Twice as Toxic? Clinical Oncology, 2012: 24(9), 593 - 603.
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Found 3657 elementary paths and 208 elementary nodes if we consider ANSIP of length at most 10.

2) Considering only ErbB2 as THE guilty gene (thus considering it as the only one source node), is it possible to find CIs such that ALL the pathways to
OFTEN dysregulated genes in HER2+ BC?
YES.

Found 17 optimal CIs. The only CI of size 1 is ErbB2 itself and the other CIs require to be of size at least 3.

However we know that this view of the problem might be reduced as resistance to treatment targeting ErbB2 alone, might occur.

3) Considering all the MRs as source nodes, is it possible to find CIs < 6 such that ALL the pathways to OFTEN dysregulated genes in HER2+ BC?
Found 380942 elementary paths and 588 elementary nodes to be blocked simultaneously.

NO!

4) We simulated an scenario where both drugs, Trastuzumab and Lapatinib are combined. We aim to reveal complementary intervention strategies to
ensure all the pathways are intervened.

We applied OCSANA algorithm to our network top 3 master regulators.

Found 36 ClIs of size at least three. Here is and example with one of the most prevalent interventions suggested:

Intervention Set Size Score
[SRC, PIP3, ERK2] 3 6654.37
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We examined the effects of an inhibitor of PI3K, XL147, against  clinical development; it exhibits an ICs, against WT and mutant
human breast cancer cell lines with constitutive PI3K activation.  pl10a of approximately 40 nM (12).

Upon inhibition of PI3K, the cell can maintain some level of PIP3 through partial restoration of HER3 phosphorylation which
may limit the net inhibitory effect of the PI3K inhibitor thus suggesting that additional blockage of PIP3 is indeed necessary
(for example via the antagonist PTEN).

Additionally in [Abramson et al. CCR 2011:17(5)] is suggested, as with one of our predicted combinations that, to inhibit the
HER2 network and its output PI3K/Akt another rational therapeutic combination is trastuzumab or lapatinib plus a HER3 or an
AKT inhibitor.
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Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance
pathways.

Zhang S, Huang WC, Li P, Guo H, Poh SB, Brady SW, Xiong Y, Tseng LM, Li SH, Ding Z, Sahin AA, Esteva FJ, Hortobagyi GN, Yu D.
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Abstract

Trastuzumab is a successful rationally designed ERBB2-targeted therapy. However, about half of individuals with ERBB2-overexpressing breast
cancer do not respond to trastuzumab-based therapies, owing to various resistance mechanisms. Clinically applicable regimens for overcoming
trastuzumab resistance of different mechanisms are not yet available. We show that the nonreceptor tyrosine kinase c-SRC (SRC) is a key
modulator of trastuzumab response and a common node downstream of multiple trastuzumab resistance pathways. We find that SRC is activated in
both acquired and de novo trastuzumab-resistant cells and uncover a novel mechanism of SRC regulation involving dephosphorylation by PTEN.
Increased SRC activation conferred considerable trastuzumab resistance in breast cancer cells and correlated with trastuzumab resistance in
patients. Targeting SRC in combination with trastuzumab sensitized multiple lines of trastuzumab-resistant cells to trastuzumab and eliminated
trastuzumab-resistant tumors in vivo, suggesting the potential clinical application of this strategy to overcome trastuzumab resistance.

In this work the authors showed how SRC, a non-membrane tyrosine kinase, is a common signaling node in trastuzumab
resistance caused by different mechanisms in HER2-positive breast cancers. A SRC inhibitor restored trastuzumab sensitivity
in vitro and in mouse tumor models, suggesting a new way to tackle drug resistance in breast tumors.
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Abstract

Purpose: The PI3K/Akt/mTOR pathway is an attractive target in HER2-positive breast cancer that is
refractory to anti-HER2 therapy. The hypothesis is that the suppression of this pathway results in
sensitization to anti-HER2 agents. However, this combinatorial strategy has not been comprehensively
tested in models of trastuzumab and lapatinib resistance.

Experimental Design: We analyzed in vitro cell viability and induction of apoptosis in five different cell
lines resistant to trastuzumab and lapatinib. Inhibition of HER2/HER3 phosphorylation, PI3K/Akt/mTOR,
and extracellular signal-regulated kinase (ERK) signaling pathways was evaluated by Western blotting.
Tumor growth inhibition after treatment with lapatinib, INK-128, or the combination of both agents was
evaluated in three different animal models: two cell-based xenograft models refractory to both trastuzumab
and lapatinib and a xenograft derived from a patient who relapsed on trastuzumab-based therapy.

Results: The addition of lapatinib to INK-128 prevented both HER2 and HER3 phosphorylation induced
by INK-128, resulting in inhibition of both PI3K/Akt/mTOR and ERK pathways. This dual blockade
produced synergistic induction of cell death in five different HER2-positive cell lines resistant to trastuzumab
and lapatinib. Invivo, both cell line-based and patient-derived xenografts showed exquisite sensitivity to the
antitumor activity of the combination of lapatinib and INK-128, which resulted in durable tumor shrinkage
and exhibited no signs of toxicity in these models.

Condusions: The simultaneous blockade of both PI3K/Akt/mTOR and ERK pathways obtained by
combining lapatinib with INK-128 acts synergistically in inducing cell death and tumor regression in breast
cancer models refractory to anti-HER2 therapy. Clin Cancer Res; 1-10. ©2012 AACR.
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Current & Future Work

e Data Integration into Cellular Signaling Networks for Combinations
of Targeted Therapies in Disease Networks

* Integration of high through-put data to better prioritize combinations of
interventions

* Integration of data from drugome and drug-target interactions

 Dynamical Modeling

* Implement signal propagation functions into network’s edges to better quantify
information transduction in signaling networks (signal propagation).
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