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Definitions

1. T - graph (A simplicial complex; X metric space)
vo - distinguished vertex (oo; x0)
Z" - infinite lattice (usual metric)

2. An(T, w) - set of graph homs f: Z" — V(I), that is,

if d(3,b) =1 in Z" then d(f(&), f(b)) = 0 or 1, with
f(I') = v almost everywhere

3. f,g are discrete /lomotopic if there exist h € An1(I, vo) and k,£ € N
such that for all i € Z",

- -,

h(7', k) = F(7)
h(i',0) = g(7)

4. An(T, vo) - set of equivalence classes of maps in A,(I, vo)
Note: translation preserves discrete homotopy
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Group Structure

» Multiplication: for f, g € A,(T, vp) of radius M, N,

fa(i) = 16 <M
g(il—(M+N),i2,...in) hn>M

Vo

Vo
Vo

LY e e [f g] = [f][e]

Vo

Vo
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> Identity: e(i)=v VieZ"
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> Inverses: 1) = f(—i,...,i,) VieZ

Example (n = 2)
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Examples
Al (VO Vl, Vo) = ]_
V2
A ( Y ) —1
1 VOA LV

V3 Vo
Al( 7V0> =1

Vo Vi
( ) ~ 7

o
Vo) =2

AT,

(2-dim cell complex: attach 2-cells to A, O of T')

m1(F, vo)/N(3,4 cycles) = 71 (Xr, w)
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> AZ(A, GO) = An(r17 UO)
% vertices = all maximal simplices of A of dim> ¢
(0,0") € E(T}) < dim(cNo’) >gq

» Al(X,xo) r-Lipschitz maps f: Z" — X (stabilizing in all
directions)

f: X = Yis r-Lipschitz <= d(f(x1),f(x2)) < rd(xi,x2)
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Is it a Good Analogy to Classical Homotopy?

1. If I is connected, A,(T, vp)independent of vy

2. Siefert-van Kampen: if
r=ryur,
I"; connected
vwelinl,
1 N> connected
A\, O lie in one of the [

then
AT, vo) = A1(T1, vo) * A1 (T2, vo) /N([4] * []7)

for f aloopinliNTly
3. Relative discrete homotopy theory and long exact sequences

4. Associated discrete homology theory...?
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Co(F) == La(F)/Da(T)

elements of C, correspond to n-chains
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Necessities
4. Boundary operators 0, for each n > 1

n

On(0) = ) (-1)/(A(0) — Bf())

i=1

extend linearly to £,(I)

an(Dn(r)) < anl(r)

50 Op: Cp(T) = Co—1(T) is well-defined
8,, o 8n+1 =0

vV vy VvVvYy
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Definition
The discrete homology groups of T

DH,(T) = Ker(0,)/Im(0p+1)

Examples
DH,(=)=0 Vn>1 DH,(A)=0 Vn>1
DH,(O)=0 VYn>1 DH: () =
Definition

If I C T, then 9,(Cy(I")) C C,h—1(I"") and there are maps
On: Co(T,T") = Co(M)/ Co(T") — Cpa (T, T)
The relative homology groups of (I',T"):

DH,(T,T") = Ker(9,)/Im(0p+1)
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1. Hurewicz Theorem: DH;(IN) = Aib(r) n>?2
2. Discrete version of Eilenberg-Steenrod axioms and
Mayer-Vietoris sequence:

Discrete open cover: n-dim discrete cover of I' (or A, X) is a
family of subgraphs (or subsets) of I' such that:

() r=yr
(ii) for each non-degenerate n-cube o, we have o € I'; for some i
(iii) Discrete cover is an n-dim cover for each n

A. Mayer-Vietoris sequence:

O« diag

e DHy(T1NT2) 225 DH,(I'1) @ DH,(T>)
G DHN(T1UT2) % DH,_1(T1NT)
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B. Eilenberg-Steenrod axioms:
» Homotopy: If
fag: (ra rl) — (r/7 r/1)
are discrete homotopic maps then their induced maps on

homology are the same
» Excision:

DH. (T2, Ty NTL) = DH.(I, )

if =T, UTl, is a discrete cover
» Dimension:

DH,(e,0) = {0} Vn>1

» Long exact sequence:

= DH,p(I") <5 DHy(T) <5 DHo(T,T") 255 DHy_1(I) - --
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How to Judge if Homology Theory is Good?

C. Which groups can we obtain?
» For a fine enough rectangulation R of a compact, metrizable,
smooth, path-connected manifold M, let ' be the natural
graph associated to R. Then

7T1(M) = Al(l'R)

I (+ suspension)

» For each abelian group G and i € N, there is a finite
connected simple graph I such that

» There is a graph S” such that

Z ifk=n
DHk(Sn)_{o if k #n
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Complex K(m,1) Spaces
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Complex K(m,1) Spaces

A(SQ braid arrangement:
{fEC”‘Z,‘ZZj}, I <j

M('A(S,Z) is K(’/Ta ]-)
(Fadell-Neuwirth 1962)

Wl(M(ASZ)) & pure braid gp.
(Fox-Fadell 1963)

71 (M(C-ified refl. arr. type W))
2 pure Artin group

~ Ker(¢)
(Brieskorn 1971)

Real K(m,1) Spaces

AI,§73 3-equal subspace arr:
{)?ER"‘X,':XJ':X;(}, i<j<k

M(AE) is K(r,1)
(Khovanov 1996)

m1(M(AF 3)) = pure triplet gp.
(Khovanov 1996)

T (M(W,3)) = Ker(¢)
where W, 3 is a 3-parabolic
subgroup of type W
(B-Severs-White 2009)
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Unexpected Application of Discrete Homotopy Theory

Complex K(m,1) Spaces Real K(m,1) Spaces

.»4(,(,:’2 braid arrangement: AI,R,{73 3-equal subspace arr:

{ZE(C”‘Z,-:ZJ-},i<j {)?ER"‘X,':XJ':X;(},I'<_I.</(

M(C-ified refl. arr.) is K(mw,1)  M(W,3) is K(m,1)

(Deligne 1972) (Davis-Janusz.-Scott 2008)
Theorem

AP=k+L( Coxeter complex W) = m(M(W,x)) 3<k<n

Note: Af‘”l > =~1for k>3



Preparation for Proof



Preparation for Proof

1. Presentation of a Coxeter group (W, S)



Preparation for Proof

1. Presentation of a Coxeter group (W, S)
(i) s?=1forse S



Preparation for Proof

1. Presentation of a Coxeter group (W, S)
(i) s?=1forse S
(i) (st)?> =1 for s, t such that m(s, t) =2



Preparation for Proof

1. Presentation of a Coxeter group (W, S)
(i) s>=1forse$S

(i) (st)?> =1 for s, t such that m(s, t) =2

(iii) (st)® =1 for s, t such that m(s, t) = 3



Preparation for Proof

1. Presentation of a Coxeter group (W, S)
(i) s>=1forse$S

(i) (st)?> =1 for s, t such that m(s, t) =2

(iii) (st)® =1 for s, t such that m(s, t) = 3



Preparation for Proof

1. Presentation of a Coxeter group (W, S)
(i) s>=1forse$S

(i) (st)?> =1 for s, t such that m(s, t) =2

(iii) (st)® =1 for s, t such that m(s, t) = 3

2. Braid group: “S, — (i)" i.e.

(S;Sj)2 =1 (s;s;+1s,-)2 =1



Preparation for Proof

1. Presentation of a Coxeter group (W, S)
(i) s?=1forse S

(i) (st)?> =1 for s, t such that m(s, t) =2
(iii) (st)® =1 for s, t such that m(s, t) = 3
2. Braid group: “S, — (i)" i.e.
(S;Sj)2 =1 (5,'5,'.}_15,')2 =1

3. Pure braid gp: Ker(¢), where ¢: “S, — (i)"— S, by ¢(si) = s;

T (M(A7,)) = Ker(9)
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4. k-parabolic arrangement (generalization of k-equal
arrangement of type W)

» P - a collection of rank k — 1 parabolic subgroups of W closed
under conjugation

» Wi ={Fix(G) | G € P}
» W’ - new group with same generators as W and subject to

m(s,t) otherwise

(s, ) = {oo if (s,t) € P

Note: if k =3 we have (s,s) ¢ P, and if |i — j| > 2 we have
<5i75j> ¢ P

5. W =W — {(iii),(iv),...}" = m(M(W,3)) = Ker(¢')
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Essence of Proof

A. Bjorner-Ziegler: given a simplicial decomposition A of S¥

Ag a sub-complex of A

4
3 regular CW-complex X s.t. m1(X) = m1(A/Ap)

B. Intersect S"~! with hyperplane arrangement W ~» simplicial
decomposition of S"1

Ag the 3-parabolic subspace arrangement of type W

U
m1(A/ Do) = m1(X)
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What is X7

» The W-permutahedron is the Minkowski sum of unit line
segments | to hyperplanes of W
> lts 2-skeleton has:
vertices w € W
edges (w, ws), where s is a simple reflection

2-faces are bounded by cycles (w, ws, wst, . .., w(st)™*?)
4-cycles (st)>’ =1 (s and t commute)
6-cycles (st =1
8-cycles (st)*=1

» X is the subcomplex of the W-permutahedron gotten by
removing the faces corresponding to Ag, i.e. removing the
faces bounded by 6-cycles, 8-cycles,. ..
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C. m1(X)

1%

m1(2-skeleton of X)
71 (1-skeleton of X)/N(3,4 cycles)
A1(X)

I

I

D. Let W := "W — {(ii),(iii),(iv),... }"" (keep involutions only)
and let ¢: W — W by ¢(s;) = s;

Ker(¢) = m1(1-skeleton of X)
= 71 (1-skeleton of W-permutahedron)

E. Ker(¢)/N = Ker(¢')
where ¢': “W — {(iii),(iv),. .. }"— W by ¢(s;) = si



We have replaced a group (1) defined in terms of the topology of
a space with a group (A;) defined in terms of the combinatorial
structure of the space.



Q>
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