Rational Design of Antibiotic Treatment Plans

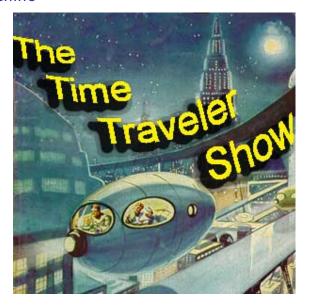
Bernd Sturmfels UC Berkeley

Joint paper with Portia Mira, Kristina Crona, Devin Greene, Juan Meza and Miriam Barlow

PLOS One, May 6, 2015

Our Abstract

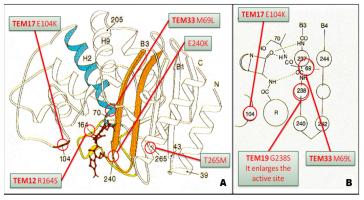
"The development of reliable methods for restoring susceptibility after antibiotic resistance arises has proven elusive. A greater understanding of the relationship between antibiotic administration and the evolution of resistance is key to overcoming this challenge.


Here we present a data-driven mathematical approach for developing antibiotic treatment plans that can reverse the evolution of antibiotic resistance determinants.

We have generated adaptive landscapes for 16 genotypes of the TEM β -lactamase that vary from the wild type genotype TEM-1 through all combinations of four amino acid substitutions

...

Overall this study shows that there is promise for reversing the evolution of resistance through antibiotic treatment plans."


Time Machine

Think of reversing the evolution as traveling back in time.

Chemistry

Our time traveler is the resistance gene TEM β -lactamase. Identified by Naomi Datta in 1963; named after patient Temoneira.

Wiki: Beta-lactamases are enzymes produced by some bacteria that provide resistance to ... antibiotics like penicillins, cephamycins, ... Beta-lactamase provides antibiotic resistance by breaking the antibiotics' structure. These antibiotics all have a common element in their molecular structure: a four-atom ring known as a β -lactam ...

Evolution Observed

Of 190 clinically identified TEM genotypes, 174 differ from the wild type TEM-1 by at most four amino acid substitutions:

Number of amino acid substitutions	Number of TEM enzymes
1	53
2	53
3	37
4	31
5	10
6	2
7	2
8	0
9	0
10	1
11	1

The Barlow lab studies a system with four amino acid substitutions.

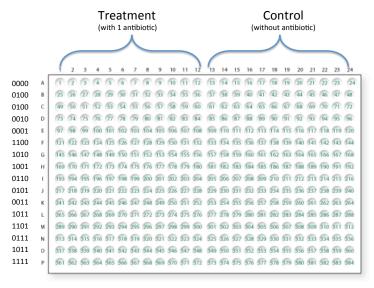
TEM-50 system

The TEM-50 genotyope is highly evolved.

It differs from the TEM-1 in four amino acid substitutions:

Experiments: The Barlow lab

- created all 16 genotypes between TEM-1 and TEM-50
- measured the growth rates of 12 replicates of E.coli DH5 α -E
- ► repeated in the presence of each of 15 β-lactam antibiotics


 AMP, AM. CEC. CTX, ZOX. CXM. CRO. AMC. CAZ. CTT. SAM. CPR. CPD. TZP. FEP

The 4-dimensional cube

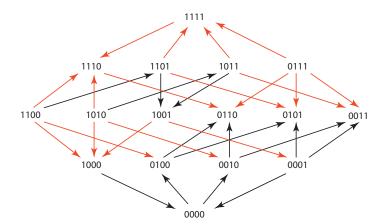
Mutant	Isolated	Binary Allele Code
Wild Type	TEM-1	0000
M69L	TEM-33	1000
E104K	TEM-17	0100
G238S	TEM-19	0010
N276D	TEM-84	0001
M69L/E104K	-	1100
M69L/G238S	-	1010
M69L/N276D	TEM-35	1001
G238S/E104K	TEM-15	0110
G238S/N276D	-	0011
N276D/E104K	-	0101
M69L/E104K/ N276D	_	1101
M69L/E104K/ G238S	-	1110
G238S/N276D/ E104K	-	0111
G238S/N276D/ M69L	-	1011
TEM-50	TEM-50	1111

The data

Measure the fitness of each of the 16 genotypes

Fitness landscapes

For each of the 15 **antibiotics** AMP, AM, CEC, CTX, ZOX, CXM, CRO, AMC, CAZ, CTT, SAM, CPR, CPD, TZP, FEP we have a


 $2\times2\times2\times2$ -table $\mathbf{f}=(f_{ijkl})$ with entries in \mathbb{R}

Fitness landscapes

For each of the 15 **antibiotics** AMP, AM, CEC, CTX, ZOX, CXM, CRO, AMC, CAZ, CTT, SAM, CPR, CPD, TZP, FEP we have a

 $2\times2\times2\times2$ -table $\mathbf{f}=(f_{ijkl})$ with entries in \mathbb{R}

We care about the dynamics on such fitness landscapes:

Population genetics

A *substitution model* is a function

$$M: \mathbb{R}^{16} \longrightarrow \mathbb{R}^{16 \times 16}$$

that assigns to each fitness landscape f a transition matrix M(f).

We use two simple models:

► The Equal Probability Model (EPM)

$$M_{uv} = 1/k$$

if $u \rightarrow v$ and genotype u has k outgoing arrows.

► The Correlated Probability Model (CPM)

$$M_{uv} = \frac{f_v - f_u}{\sum_w (f_w - f_u)}$$

if $u \to v$ and the sum is over all genotypes w with $u \to w$.

Data yield matrices $M^{XPM}(\mathbf{f}_{\star})$ of format 16×16, where X=E,C and $\star=$ AMP, AM, CEC, CTX, ZOX, CXM, CRO, AMC, CAZ, CTT, SAM, CPR, CPD, TZP, FEP

Matrix algebra

Fix EPM or CPM, and consider the matrix product

$$M(\mathbf{f}_{a_1}) \cdot M(\mathbf{f}_{a_2}) \cdot M(\mathbf{f}_{a_3}) \cdot \cdots \cdot M(\mathbf{f}_{a_k})$$

where $a_1, a_2, a_3, \ldots, a_k$ is any sequence of antibiotics.

Matrix algebra

Fix EPM or CPM, and consider the matrix product

$$M(\mathbf{f}_{a_1}) \cdot M(\mathbf{f}_{a_2}) \cdot M(\mathbf{f}_{a_3}) \cdot \cdots \cdot M(\mathbf{f}_{a_k})$$

where $a_1, a_2, a_3, \ldots, a_k$ is any sequence of antibiotics.

There are 15^k such sequences!

Which ones should the doctors try?

Matrix algebra

Fix EPM or CPM, and consider the matrix product

$$M(\mathbf{f}_{a_1}) \cdot M(\mathbf{f}_{a_2}) \cdot M(\mathbf{f}_{a_3}) \cdot \cdots \cdot M(\mathbf{f}_{a_k})$$

where $a_1, a_2, a_3, \ldots, a_k$ is any sequence of antibiotics.

There are 15^k such sequences!

Which ones should the doctors try?

Fix two genotypes $u, v \in \{0, 1\}^4$.

The entry of this matrix in row u and column v is the fixation probability of genotype u mutating to genotype v.

Combinatorial optimization

Let v = TEM-1 and u any other genotype.

Time Machine Problem: Maximize the (u, v) entry of the matrix

$$M(\mathbf{f}_{a_1}) \cdot M(\mathbf{f}_{a_2}) \cdot M(\mathbf{f}_{a_3}) \cdot \cdots \cdot M(\mathbf{f}_{a_k})$$

over all 15^k antibiotic sequences of length k.

Combinatorial optimization

Let v = TEM-1 and u any other genotype.

Time Machine Problem: Maximize the (u, v) entry of the matrix

$$M(\mathbf{f}_{a_1}) \cdot M(\mathbf{f}_{a_2}) \cdot M(\mathbf{f}_{a_3}) \cdot \cdot \cdot \cdot M(\mathbf{f}_{a_k})$$

over all 15^k antibiotic sequences of length k.

Idea: Travel back in time to 1963

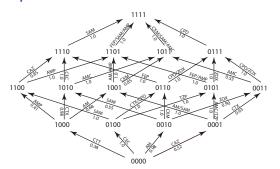
Just do it

Time Machine Problem: Given 15 transition matrices of format 16×16 , consider all products of length k, and maximize a particular entry in the first row.

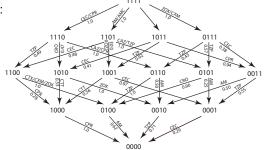
We implemented a brute-force approach for k = 2, ..., 6 in maple, and we computed optimal solutions for both substitution models.

Just do it

Time Machine Problem: Given 15 transition matrices of format 16×16 , consider all products of length k, and maximize a particular entry in the first row.


We implemented a brute-force approach for k = 2, ..., 6 in maple, and we computed optimal solutions for both substitution models.

Results:


Starting	1 Step	#	2 Step	#	3 Step	#	4	#	5 Step	#
Genotype							Step			
1000	1.0	1	1.0	3	1.0	7	1.0	15	1.0	31
0100	0.617	1	0.617	6	0.617	36	0.617	219	0.617	1360
0010	0.714	1	0.714	2	0.714	3	0.714	4	0.714	5
0001	0.287	1	0.287	1	0.592	2	0.592	18	0.726	2
1100			0.617	3	0.617	18	0.617	108	0.617	657
1010			0.715	1	0.715	6	0.715	27	0.715	112
1001			0.559	1	0.559	4	0.726	1	0.726	2
0110			0.617	1	0.617	10	0.617	78	0.617	555
0101			0.592	1	0.592	9	0.612	1	0.612	9
0011			0.361	1	0.361	9	0.586	1	0.599	2
1110			-		0.617	2	0.617	24	0.617	215
1101			-		0.592	2	0.592	24	0.617	12
1011			-		0.532	1	0.532	1	0.684	1
0111			-		0.586	1	0.600	1	0.617	4
1111			-		-		0.617	4	0.617	72

Biomedical interpretation

Since 1963:

Back to wild type:

Press Coverage

examiner.com

NEWS / SCIENCE & SPACE

See also: science & space, antibiotic resistant bacteria

Researchers find a way to reverse antibiotic resistance in bacteria

May 6, 2015

Scientists May Have Just Found A Solution For Deadly Superbugs

The Huffington Post | By Anna Almendrala (/anna-(/use/sillpgibalitter.com/annaalmendrala)

ADVERTISE

Biology leads to New Mathematics

Time Machine Problem: Given square matrices M_1, \ldots, M_n , maximize a particular matrix entry over all n^{ℓ} words $M_{i_1}M_{i_2}\cdots M_{i_{\ell}}$ of length ℓ in these matrices.

What is the computational complexity of this problem?

Does there exists an efficient dynamic programming approach?

Biology leads to New Mathematics

Time Machine Problem: Given square matrices M_1, \ldots, M_n , maximize a particular matrix entry over all n^{ℓ} words $M_{i_1}M_{i_2}\cdots M_{i_{\ell}}$ of length ℓ in these matrices.

What is the computational complexity of this problem?

Does there exists an efficient dynamic programming approach?

The answer is **no**. It can be reduced to k-SAT.

Theorem (Ngoc Tran & Jed Yang, arXiv: May 11, 2015) "Antibiotics Time Machine Problem is NP-hard".

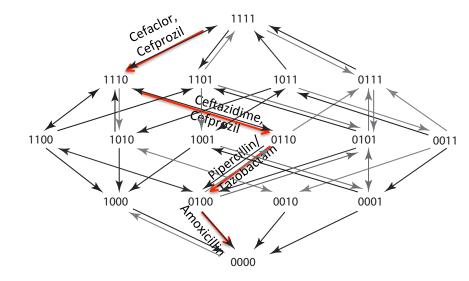
Tran and Yang also show that a certain natural convex relaxation can be solved in polynomial time.

Biology leads to New Mathematics¹

Time Machine Problem: Given square matrices M_1, \ldots, M_n , maximize a particular matrix entry over all n^{ℓ} words $M_{i_1}M_{i_2}\cdots M_{i_{\ell}}$ of length ℓ in these matrices.

What is the computational complexity of this problem?

Does there exists an efficient dynamic programming approach?


The answer is **no**. It can be reduced to k-SAT.

Theorem (Ngoc Tran & Jed Yang 2015) The Time Machine Problem is NP-hard.

Tran and Yang also show that a certain natural convex relaxation can be solved in polynomial time.

¹Is Theoretical Computer Science Part of Mathematics?

Conclusion: Optimal Treatment Plans Can Be Designed

.... by solving the Time Machine Problem

Press Coverage

Computer Scientists May Have Just Found A Solution For Deadly Superbugs

Resistência de bactérias aos antibióticos é revertida

(1) May 7, 2015

Redação do Diário da Saúde

Evolução às avessas

A proliferação das bactérias resistentes aos antibióticos é um problema crescente em nível mundial.

A boa notícia é que esse problema talvez seja reversível.

Miriam Barlow (Universidade da Califórnia) e Kristina Crona (Universidade Americana) descobriram uma maneira de fazer com que as bactérias retornem a um estado pré-resistente.

As duas pequisadoras demonstraram essa "evolução às avessas" usando uma família de 15 antibióticos disponíveis para combater infecções comuns, incluindo a penicilina.

Ciclagem de antibióticos

Para anular o processo r pesquisadoras as expusi calcularam a probabilida

a aos antibióticos, as Com esses dados, elas de ao medicamento.

GEN News Highlights

May 6, 2015

Reverse Resistance by Rewinding Evolution